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The control loop in the industry is a component that must be maintained because it will 

determine the plant's performance. Most industrial controllers experience oscillations with 

various causes, such as noise, oscillation, backlash, dead band, hysteresis, random variation, 

and poor controller tuning. The oscillation diagnosis system, which can understand the 

oscillation type characteristics, is built based on machine learning because it is dynamic and not 

based on specific rules. This study developed an online oscillation diagnosis program using the 

extreme gradient boosting (XGBoost) method. The data was obtained through the simulation of 

the Tennessee Eastman process. The data is segmented on specific window sizes, and then time 

series feature extraction is performed. The extraction results are then used to build an XGBoost 

model capable of performing oscillation diagnosis tasks. There are seven types of oscillations 

tested in this study. The model that has been made is implemented online with the help of sliding 

windows. The results show that the XGBoost model performs best when the data window size 

is 100, with the accuracy performance and the F1 score of the model in classifying the type of 

oscillation being 0.918 and 0.905, respectively. The model can detect the type of oscillation 

with an average diagnosis time of 712 seconds on diagnostic tests. 
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INTRODUCTION 

The loop control system is a crucial component in the industrial 

world. It is important because the control group functions to 

maintain the process variables at their set point so that the quality 

of the products produced is under predetermined specifications [1]. 

In addition, the performance of the control group in a factory 

represents the condition of the factory. The occurrence of 

oscillations in the control loop indicates that the control loop has 

poor performance [1].  

 

Problems related to this performance make control loop 

performance monitoring (CPM) an essential aspect to improve. 

CPM includes various automation techniques to ensure 

controllers, actuators, and sensors are functioning correctly [2]. 

Among other sub-fields of CPM, oscillation detection is one of the 

issues that has received substantial attention due to the frequent 

occurrence of control loop oscillations and their negative impact 

on plant profitability. The oscillations directly impact the plant's 

regular operation, energy consumption, and raw materials, thus 

affecting the plant's profitability. 

 

Based on a survey conducted on 26,000 PID controllers from 

various process industries, there are 16% of control loops with 

excellent performance, 16% with acceptable performance, 22% 

with moderate performance, 10% with poor performance, and the 

remaining 36% open control loop [3]. It shows that the control 

loop oscillation is an unresolved problem. 

 

Every control loop in the industry must be checked to determine 

the oscillation occurrence in the control loops [4], [5]. Typically, 

process industries have between 500 and 5000 control loops [6]. 

Visual inspection consumes resources and may result in 

undetected oscillations [7]. An automatic oscillation detection 

technique is needed in an industrial process to overcome this 

limitation. 

 

Oscillation problems can be caused by noise, oscillation, backlash, 

dead band, dead zone, hysteresis, random variation, and wrong 

controller tuning [8]. The many causes of the oscillations are also 

a challenge in the process industry. Solving oscillation problems 

and developing solutions becomes more manageable when the 

cause of oscillations can be identified and distinguished with 

certainty. In addition to many reasons that need to be detected, the 

oscillations that appear intermittently are challenging. Intermittent 

oscillation is a type of oscillation that occurs at irregular intervals 

and occurs intermittently. The characteristics of this type of 

oscillation appear spontaneously erratic and can disappear 

automatically [9]. The duration and intensity of the intermittent 

oscillations are indeterminate. The difference between the 

occurrence of sporadic oscillations with normal stable oscillations 
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makes intermittent oscillations more challenging to detect. In 

addition, the causes of intermittent oscillations that appear can 

vary over a period. Therefore, oscillations that occur intermittently 

from various types of sources need to be detected automatically to 

reduce the decline in system performance in the long term.  

 

The current oscillation detection method is mainly conducted 

offline. Several techniques are still performed offline, such as 

integral of absolute control error, zero crossing of auto covariance, 

wavelet transform, modified empirical mode decomposition, and 

discrete cosine transform [10]. One of the difficulties in 

implementing this method in online mode is the determination of 

rule-based evaluation and window size [11]. Therefore, another 

technique that can adapt to new signals and does not require 

complicated rules must be applied. 

 

As technology develops, the innovative factory concept 

encourages using sensors, devices, and intelligent machines so that 

factories can continuously collect production-related data [11]. 

The creative factory concept enables a change in the error 

detection program at the factory. The program was initially based 

on a method with specific rules and worked in offline mode to be 

based on a machine learning method that is intelligent and can 

work in online mode (automatic) [10]. With the contribution of 

machine learning algorithms, error detection can be carried out 

accurately and as early as possible, thereby reducing factory 

downtime [12]. In intermittent oscillation detection, machine 

learning algorithms are applied to make the implementation more 

straightforward and robust. Several machine learning methods 

have been applied to several applications [12]–[18]. 

 

Research on methods for detecting control loop oscillations in the 

process industry has been widely carried out and published during 

the last few years. However, the oscillation detection method 

applied is still rule-based. It works in offline mode (manual), while 

industrial needs demand a technique that is smart, not complex, 

and works in an online way (automatic) [11]. Several studies 

discuss the application of machine learning for oscillation 

detection, especially in the Tennessee Eastman (TE) process. As 

Downs and Vogel [11] proposed, the TE process has been used as 

a benchmark in various process control and monitoring studies. 

Several previous studies are described as follows. 

 

Gao and Hou [19] devised a method for identifying oscillation 

defects based on a support vector machine (SVM) model coupled 

with principal component analysis (PCA) and grid search (GS) in 

the TE process. PCA decreases feature dimensions, whereas GS 

optimizes parameters. After the initial scaling and normalization 

of the data, PCA was used to minimize the dimensional features. 

The performance of SVM is then improved using GS performance 

in a subsequent step using a genetic algorithm and particle swarm 

optimization. The SVM model and PCA-GS combination offer a 

remarkable classification accuracy of close to 99%. The GS-PCA-

based SVM was compared to other SVM-based error diagnosis 

methods in simulation testing with the TE Process. It had the 

highest average of 96.77% and the best computing efficiency with 

the lowest average duration of 1.35 seconds. 

 

A deep belief network (DBN)-based oscillatory fault detection 

technique was proposed by Zhang and Zhao [20] in 2017. An 

improved DBN model with a one-class-one-model architecture is 

used to extract features from continuous process data in the spatial 

and temporal domains. The findings demonstrate that when 

diagnosing random-type faults, the DBN sub-network with 

Gaussian activation function outperformed the sub-network with 

Sigmoid activation function. Additionally, the enhanced DBN 

model-based fault diagnosis used in the TE process performed 

well, with an average error diagnosis rate of 82.1% for all 20 faults. 

 

Wu and Zhao investigated the application of a deep convolutional 

neural network (DCNN) model for diagnosing faults in the 

Tennessee Eastman (TE) chemical process [21]. The DCNN 

model is built with a convolutional layer, a pooling layer, a dropout 

layer, and a fully connected layer to extract features in the spatial 

and temporal domains. A feature map of dimension m x n is 

created from the raw process data, where m denotes the length of 

the sample time and n is the total number of variables. The 

experimental findings demonstrate the effectiveness of the 

DCNN-based model for fault diagnosis in the TE process. All 20 

different types of faults had an average fault detection rate (FDR) 

of 88.2%, except for three problems that were extremely 

challenging to identify. Additionally, dynamic diagnosis time and 

diagnostic performance were investigated, with an optimum 

diagnosis time of 2-3 hours and an FDR of 0.941. 

 

Park et al. [22] investigated fault diagnosis and detection using a 

combination autoencoder and long short-term memory (LSTM) 

network in 2019. A straightforward autoencoder assesses 

multivariate time series data to find unusual errors for fault 

detection while training the model using standard data. The LSTM 

network is then given the predicted raw fault data to determine the 

fault type. To accelerate the convergence of the overall structure 

with fewer numerical issues, two trained autoencoder and LSTM 

models are coupled. The performance of fault identification and 

diagnosis is then assessed using the TE process benchmarks. The 

autoencoder and LSTM network work together quickly and 

correctly to detect deviations from typical behavior. Yao et al. [23] 

developed a hybrid intelligent fault diagnosis strategy for chemical 

processes using penalty iterative optimization. The models used in 

the research are DBN and adaptive lifting wavelet (ALW). The 

ALW method can adaptively set the threshold function to match 

different data sets.  

 

Based on several studies that have been reviewed, most of the 

studies use offline methods, and only two studies discuss online 

applications. The term offline in this study refers to a program that 

works without being connected to a network. This method is 

usually applied regularly to check for faults in the control loops. 

However, the program cannot detect in real time when an 

oscillation disturbance occurs in a process variable. Meanwhile, 

the term online refers to a program directly connected to a 

network. The sensor measurement results are sent directly and 

continuously to a computer through a predetermined grid, in this 

case, using a simulator. The program in the computer will 

immediately classify the type of oscillation as soon as the data is 

sent. This method can predict sudden changes in variables and 

detect oscillation disturbances in real time when fluctuations first 

appear [24]. 

 

Therefore, this study developed a method for detecting intermittent 

oscillation using the extreme gradient boosting (XGBoost) method 

that can work online. Furthermore, the machine learning method 
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was chosen because the model built is more straightforward, and 

the computation time is lower than deep learning. In addition, 

XGBoost computing is rated for its quiet processing time, which 

is efficient and easily scalable [25]. 

 

METHOD 

The data used in this research is in the form of TE process output 

variable data, totaling 52 variables containing 11 manipulated 

variables and 41 measured variables. TE process data was obtained 

through simulations performed for each type of fault for 8 hours. 

The TE process includes the overall dynamics of a chemical plant 

with 20 marks, with five different types: step, random variation, 

stiction, tuning error, and unknown. To get more optimal results, 

the detection of oscillations in this study was only carried out on 

the reactor and condenser. Figure 1 shows the process diagram of 

the TE process. 

 

 

Figure 1. Diagram of Tennessee Eastman process [26] 
 

There are six faults in the reactor and condenser, each type of step, 

random variation, and stiction. However, the stiction fault in the 

reactor coolant loop is not used because the oscillations are not 

visible and are not easy to differentiate. The tuning error type fault 

is added to this research by changing the controller constant when 

the simulation runs, with tuning errors of 0.5x and 1.5x of the 

proportional constant. The total length of the data from this study 

is 230,400 data with details of 7 types of oscillating data, and 1 

type of non-oscillating data, each type of data is 28,800. The 

variables used in this study are shown in Table 1. IDV (15) was 

not studied because, in previous studies conducted by Zhan et al. 

[20], Wu et al. [21], and Jia et al. [27], IDV (15) is very difficult 

to classify. IDV (15) behavior is like IDV (0), so the program will 

need to diagnose no oscillation. 

 

The dataset of simulation results for 8 hours was segmented based 

on the size of the window to be tested: 50, 100, 150, 200, and 250. 

The label of each segment will follow the label of the faults. 

Furthermore, time series feature extraction is used to extract a 

dataset of time series characters. Feature extraction applies three 

domains, statistical, temporal, and spatial. Features with a high 

degree of importance and correlation are selected to reduce the 

number of features. 

 

 

 

Table 1. Details of the Faults in This Study 

TE's fault 

name 

Process 

Variables 

Oscillation's 

Type 

Fault's 

name in 

this 

study 

IDV (0) Normal/No fault Normal IDV (0) 

IDV (4) 

The temperature 

of the reactor 

cooling water 

inlet  

Step IDV (1) 

IDV (5) 

The temperature 

of the condenser 

cooling water 

inlet 

Step IDV (2) 

IDV (11) 

The temperature 

of the reactor 

cooling water  

inlet  

Random 

variation 
IDV (3) 

IDV (12) 

The temperature 

of the condenser 

cooling water 

inlet 

Random 

variation 
IDV (4) 

IDV (14) 

Condenser 

cooling water 

valve 

Sticking IDV (5) 

Additional 

IDV 

Low proportional 

tuning constant 
Tuning Error IDV (6) 

Additional 

IDV 

High proportional 

tuning constant 
Tuning Error IDV (7) 

 

Then PCA is applied to condense the extensive set of variables into 

a smaller group that retains most of the data information, reducing 

the dimensions of the large dataset. Accuracy inherently suffers 

when a data set's number of variables is reduced. Even said, PCA 

can minimize dimensionality while preserving the essential details 

of the data by sacrificing a little accuracy for simplicity. In simple 

terms, PCA can be calculated by the following steps: 

1. determine the dataset, 

2. subtract each value from the average of its 

corresponding column, 

3. compute the covariance matrix, 

4. calculate the eigenvectors and eigenvalues of the 

covariance matrix, 

5. choose components and create a feature vector, and 

6. obtain a new set of data. 

 

Furthermore, the XGBoost model is built for oscillation diagnosis 

using Python. XGBoost is a decision tree based on gradient 

boosting designed to be easily scalable [25]. Like gradient 

boosting in general, XGBoost builds on the additive expansion of 

the objective function by minimizing the loss function. The 

XGBoost model is created with varying data window sizes, 

namely 50, 100, 150, and 200. Then the model is tested with test 

data that has been prepared to represent the model's performance 

when used on data that has not been studied. The XGBoost model 

testing results are then evaluated using accuracy and F1 score 

metrics. 

 

The next step is to vary the hyperparameters of the XGBoost 

model to get the model with the best performance. The 

hyperparameters that are varied are learning rate (0.05, 0.1, 0.15, 

0.2), minimum child weight (1, 3, 4, 5), maximum depth (1, 3, 5, 

7), minimum split loss (0, 0.1, 0.2, 0.3) and alpha (0, 0.001, 0.005, 

0.01). Hyperparameter variation is done by combining all 
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hyperparameters. Overall, a total of 1024 model combinations 

were tested and compared. The main metrics compared to this 

model are the F1 score and accuracy. The model with the best 

performance is used in the next step. 

 

The best XGBoost models are implemented online. TE output 

variable data is sent in real-time with the Message Queuing 

Telemetry Transport (MQTT) protocol at certain time intervals. 

The program will first wait for the received data to fill the data 

window. When the data window is complete, the program will 

perform a time series feature extraction with the features specified 

in the data preparation step. The data extraction results are then fed 

to the XGBoost model. The XGBoost then produces the oscillation 

diagnosis results. The results of online model testing are the time 

it takes for the model to detect and classify the type of oscillation 

that appears correctly.  

 

On the detection of oscillations of each type, the simulation is run 

for 30 minutes. This type of fault is activated after the first 100 

seconds. Correct diagnosis is considered if the model can correctly 

detect the type of oscillation 30 times. The time interval for each 

diagnosis is 15 seconds. Meanwhile, the intermittent oscillation 

classification test was carried out by activating a fault type for 30 

minutes and then turning it off for 15 minutes. After that, another 

kind of fault is triggered for another 30 minutes. The model's 

behavior in classifying the type of intermittent oscillation is tested. 

The detection time of each changing oscillation is calculated to 

compare it with the average time of the online classification results 

for every single non-intermittent type of fault. 

RESULTS AND DISCUSSION 

Time Series Feature Extraction and Selection Results 

In the data preparation stage, the simulation data for 8 hours is 

segmented based on the size of the windows to be tested, which 

are 50, 100, 150, 200, and 250, respectively. The label of each 

segment will follow the label of the control group. Furthermore, 

time series feature extraction is performed on XMV and XMEAS 

data from each data subset using the TSFEL library. The results of 

feature extraction are then combined into one complete dataset. 

Finally, the extracted dataset is selected to reduce the number of 

features. 

 

Feature selection is made by creating a simple XGBoost model on 

all existing data. A single decision tree calculates the importance 

of the feature for each attribute. A single decision tree performance 

measure is measured by the purity (Gini index) used to select the 

specified error function. In simple terms, the more attributes used 

to make critical decisions with a single decision tree, the higher 

their relative importance. 

 

Based on the feature importance index, several variables are 

obtained: total energy, wavelet energy, FFT mean coefficient, 

mean absolute deviation, spectral centroid, spectral kurtosis, 

spectral decrease, turning points, wavelet energy, and ECDF 

percentile. The complete extraction of these variables is then used 

to filter the entire data. As a result, the filtered data was reduced 

by more than 90%, from 9620 variables to 936 variables. These 

936 variables are used for processing in the next step. 

Effect of PCA Implementation 

The dataset selected for variables is reprocessed using the PCA 

method. PCA is a method that is often used to reduce the number 

of dimensions of the data while retaining information from the 

dataset [20]. However, in this study, the PCA applied was also 

tested to determine whether the new variable PCA results could be 

used as an additional variable. 

 

The dataset selected for variables is reprocessed using the PCA 

method. PCA is a method that is often used to reduce the number 

of dimensions of the data while retaining information from the 

dataset [20]. However, in this study, the PCA applied was also 

tested to determine whether the new variable PCA results could be 

used as an additional variable. 

 

When performing value transformations, the value of the 

eigenvectors in the covariance matrix is correlated with the total 

number of eigenvectors. The larger the eigenvalues, the more 

significant the variance explained by the principal components. 

Each of the variances is cumulatively added until it reaches a 

predetermined threshold. In this study, a 95% threshold of 

explainable variance is used. 

 

Based on Figure 2, the number of components has a reasonably 

significant variance value at first. It can be seen from the graph 

that the cumulative variance increase is relatively high up to the 

200th component. After that amount, the cumulative variance 

graph becomes sloping. The number of features of 200 represents 

95% of the variance of the entire column (initially 936 columns). 

Therefore, 200 main components of PCA are selected for further 

modeling. 

 

 

Figure 2. Graph of the Number of Components versus 

Cumulative Variance 

 

PCA-processed datasets are compared with unprocessed datasets 

and PCA-combined datasets. The test results after PCA processing 

are shown in Figures 3 and 4. The three results show no significant 

difference between the accuracy and F1 scores. However, the 

model combined with the PCA feature has better performance, 

with an accuracy value of 0.91 and an F1 value of 0.9. 

 

 
Figure 3. Graph of Accuracy Test Results with PCA 
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Figure 4. Graph of F1 score Test Results with PCA 

 

Effect of Window Size 

The window size is an important thing that needs to be optimized 

when the model testing is in online mode. The selection of a good 

window size can capture the oscillations that occur correctly so 

that no oscillation information is lost. Tests were carried out on 

window sizes of 50, 100, 150, 200, and 250. Variations in window 

size also affect the amount of data obtained for training, validation, 

and testing. Figure 5 shows the difference in the amount of data 

received. 

 

 
Figure 5. Graph of the Effect of Window Size Variations on the 

Number of Rows 

 

Simply put, the larger the window size, the less data we will get. 

Because a large window size requires extensive data, the amount 

of data obtained is less. Then the various window sizes were tested 

for the performance of the XGBoost model. The results of the 

window size test on accuracy and F1 score are shown in Figure 6 

and Figure 7, respectively. 

 

Figure 5 shows the model has a good performance with an 

accuracy above 80%. The decrease in validation and test data 

accuracy is expected because the model has never encountered the 

data during training. If we look further, models with outstanding 

accuracy are obtained by models with window sizes of 50, 100, 

and 150 because there is no significant difference in the accuracy 

values, both during validation and testing. However, the window 

size 100 is the best of the accuracy tests carried out because it has 

the highest accuracy value. 

 

The results of the F1 score test in Figure 6 show the model has a 

pretty good performance, with all F1 scores above 75%. The 

decrease in the F1 score occurred in the test data because it was 

new data outside the training dataset. If we look further, the model 

with an excellent F1 score is obtained by the model with a window 

size of 50 and 100 because the F1 score value has no significant 

difference, both during validation and testing. However, the 

window size of 100 is the best from the F1 score test carried out 

because it has the highest F1 score during validation and testing. 

 

Effect of Hyperparameter's Variation 

Optimization is carried out on hyperparameters to get better 

XGBoost model performance. The hyperparameters consist of 

learning rate (0.05, 0.1, 0.15, 0.2), minimum child weight (1, 3, 4, 

5), maximum depth (1, 3, 5, 7), minimum split loss (0, 0.1, 0.2, 

0.3) and alpha (0, 0.001, 0.005, 0.01). The system was optimized 

by combining all hyperparameters with four variations of 

hyperparameters. The procedure produces 1024 possible 

combinations. The results of the performance test get the XGBoost 

model with the following parameters: 

1. learning rate = 0.2,  

2. maximum depth = 7,  

3. minimum child weight = 7,  

4. minimum split loss = 0.2 and  

5. alpha = 0.005   

 

 

 
Figure 6. Graph of Window Size Variation Test on Accuracy 

 

 
Figure 7. Graph of Window Size Variation Test on F1 score 

 

The results of the hyperparameter combination optimization 

increase the accuracy and F1 score, as shown in Figure 8. 

However, the increase in model performance was not significant. 

Compared with the initial model without optimization, the initial 

model has an accuracy value and F1 score of 0.910 and 0.900, 

respectively. In contrast, the model after optimization has an 

accuracy value and f-score of 0.918 and 0.905, respectively. 

Although it does not significantly improve performance, 

hyperparameter optimization can improve performance by 

preventing the model from being overfitted. 

 

 
Figure 8. Comparison graph of model performance before and 

after optimization 
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Diagnosis Oscillation Test 

Online oscillation diagnosis testing tests the time it takes for each 

type of oscillation to be detected correctly by the program. The 

program can detect fluctuations correctly if it can detect the correct 

type of fault three times in a row. The online oscillation diagnosis 

test results are shown in Table 2. 

 

Table 2. Online Oscillation Diagnosis Time Test Results for Each 

Fault 

Fault Type 
Diagnosis 

Time (s) 

IDV (1) 870 

IDV (2) 1120 

IDV (3) 1170 

IDV (4) 840 

IDV (5) 330 

IDV (6) 310 

IDV (7) 350 

Average  712 

 

Diagnosis of Oscillation for Each Type 

Figures 9-15 show the program's behavior when it detects each 

oscillation type. The program can catch very well at IDV 0 or in 

regular operation without significant errors. It is because the 

standard procedure is the default value which should not have any 

mistakes. Meanwhile, the program shows a difference in behavior 

when detecting IDV 1 (Figure 9) and 2 (Figure 10) oscillations. At 

the beginning of the initiation of the change, the program detects 

IDV 3 and 4 for IDV 1 and 2, respectively. The step oscillation 

initially only affects some variables, making the program detect 

that the fluctuation is a random variation. However, after about 5 

minutes, the program could correctly see IDV 1 and 2. Then IDV 

3 (Figure 11) and 4 (Figure 12) are difficult to detect. It can be 

seen in the figure that the program is only able to detect this type 

of fault once, and then the prediction returns to normal condition. 

The occurrence and length of time are random, making it difficult 

for the program to detect them correctly. The program takes more 

than 13 minutes to detect this type of interference properly. For 

IDV 5 (Figure 13), the program behavior is almost the same as 

when seeing IDV 1 and 2, where the program detects random 

variables in both the reactor and condenser. The behavior 

difference of IDV 1, 2, 5, 6, and 7 tends to be seen faster by the 

program due to the significant difference between the process 

variable values. 

 

 
Figure 9. Prediction results of the model under IDV (1) 

 

 
Figure 10. Prediction results of the model under IDV (2) 

 

 
Figure 11. Prediction results of the model under IDV (3) 

 
Figure 12. Prediction results of the model under IDV (4) 

 

 
Figure 13. Prediction results of the model under IDV (5) 

 

 
Figure 14. Prediction results of the model under IDV (6) 

 

 
Figure 15. Prediction results of the model under IDV (7) 
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We compared the computational complexity of the proposed 

system with the DCNN method. Five selected faults are compared 

and shown in Table 3. Due to differences in IDV names, IDV in 

the previous study was named according to this study. In addition, 

the test conditions are different. Wu et al. used the sampling length 

of 20 and 10 with a three minutes interval [21], while we used the 

data length of 100 with a one-second interval. However, the 

sampling period was the same, i.e., 15 seconds. The calculation of 

the diagnosis time is based on the time it takes the model to 

diagnose the fault 30 times consecutively correctly. Overall, the 

average diagnosis time required for each type of fault since its 

initiation is 712 seconds. The model can diagnose faults faster than 

the DCNN model with a sample length of 20, although it is still 

slower than the DCNN model with a sample length of 10. 

 

 

Table 3. Comparison of the fault diagnosis times (s) of each model 

Fault 

Type 

DCNN 

(Sample length 

= 20) [21] 

DCNN 

(Sample length 

= 10) [21] 

This 

Study 

IDV (1) 480 480 870 

IDV (2) 1560  1320 1120 

IDV (3) 1140 1080 1170 

IDV (4) 780 540 840 

IDV (5) 720 720 330 

Average  936 828 866 

 

Online Intermittent Oscillation Diagnosis Test 

The intermittent oscillation test online is done by changing the 

type of oscillation after 30 minutes of an oscillation introduced. 

The overall test results are shown in Figures 16 and 17. The results 

indicate the model can detect well because the oscillations can be 

detected correctly, although not constant, both in test 1 and test 2. 

It is normal because every new data obtained can affect the overall 

information of the existing oscillations. The model can detect 

precisely and stably in less than 900 seconds. The value follows 

the previous test with an average diagnosis time of 866 seconds for 

IDV (1) to IDV (5). 
 

Figure 16. Testing Result of Intermittent Oscillation 1 
 

 
Figure 17. Testing Result of Intermittent Oscillation 2 

 CONCLUSIONS 

The research apply the XGBoost method to an oscillation 

diagnosis program that can work online and in real time. The 

testing results indicate the XGBoost model's best performance by 

a data window size of 100. The model has an excellent 

performance in classifying the type of oscillation with an accuracy 

value and F1 score of 0.918 and 0.905, respectively. 

 

In addition, based on the diagnostic test that has been done, the 

program can detect oscillations quite well. Since its initiation, the 

average diagnosis time required for each type of fault is 712 

seconds. The model can diagnose faults faster than the DCNN 

model with a sample length of 20, although it is still slower than 

the DCNN model with a sample length of 10. 
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