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This paper uses the Kohonen Self-Organising Map (KSOM) to detect, diagnose, and classify 

induction motor faults. A series of simulations using models of the 3-phase induction motor 

based on real industrial motor parameters were performed using MATLAB/Simulink under 

fault conditions such as inter-turn, power frequency variation, over-voltage and unbalance in 

supply voltage. The model was trained using the input signals of the various fault conditions. 

Various faults from an unseen induction motor were fed to the model to test the model’s ability 

to detect and classify induction motor faults. The KSOM adapted to the conditions of the unseen 

motor, detected, diagnosed and classified these faults with an accuracy of 94.12%. 
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INTRODUCTION 

An Induction Motor (IM) is an Alternating Current (AC) 

electromechanical machine that converts energy from electrical 

to mechanical. Induction motors are reliable, rugged and almost 

unbreakable with an estimated efficiency above 80% [1]. Though, 

induction motors are very reliable, nevertheless, due to harsh 

environmental conditions and installations, they are susceptible 

to several types of faults [2]. Hence, the maintenance of induction 

motors has become the main challenge that many industries face 

now to prevent unscheduled downtime and reduce maintenance 

costs [3], [4]. 

 

According to Gheitasi [5], the petrochemical industry in the 

United States of America (USA) alone, accumulated 

approximately $ 20 billion in annual losses, due to poor 

diagnostic approach to detecting and diagnosing faults in 

induction motors. Therefore, a proper approach to fault detection 

and diagnosis of induction motors has become increasingly 

essential. Over the years, most of these faults including stator, 

rotor and bearing faults have been dealt with using several 

diagnostic approaches. Artificial intelligence-based techniques, 

Hilbert Transform (HT), Discrete Wavelet Transform (DWT) and 

chemical analysis are some of the recently proposed techniques 

for the detection and diagnosis of induction motor faults [6]. 

However, these techniques were not very successful because, at 

low loads, analysing the faults using these techniques was 

difficult due to the closeness of the defect’s frequency to the 

fundamental frequency. Furthermore, Hilbert Transforms 

technique though has proven to be effective in detecting faults in 

induction motors, they are difficult to implement due to the 

complex mathematical computations while other techniques like 

the chemical approach could handle only a few fault conditions 

such as the bearing faults [7], [8], [9].   

 

Moreover, techniques such as the Motor Current Signature 

Analysis (MCSA) require sensors to be fitted in the induction 

motors to acquire useful signals [10]. These sensors interfere with 

the normal operation of induction motors and make the technique 

expensive due to the additional cost.  Fuzzy logic control 

algorithm has also been used successfully in the fault detection of 

induction motors [11], [12]. Although the algorithm was able to 

indicate the condition of the induction motor with high accuracy, 

the limitation however, had to do with the system's inability to 

adapt to new fault conditions. 

 

Upon the review of related literature on the various techniques of 

detecting and diagnosing faults in the induction motor, it was 
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realised that no work has been done using a single intelligent 

approach to detect, diagnose and classify several induction motor 

faults simultaneously with a faster computational time and higher 

accuracy. Because of these challenges, an online intelligent-based 

system is proposed using Kohonen Self-Organising Map 

(KSOM) to address these problems. KSOM does not require 

sensors for its implementation, can self-learn and self-improve to 

adapt to new conditions of the induction motor. Moreover, the 

size of the map can be increased to handle any number of faults 

conditions and also possesses visualisation capabilities. As such, 

the KSOM can be used as a successful diagnostic technique for 

the detection and diagnosis of induction motor faults. 

Classification of Induction Motor Faults 

Faults in 3-phase induction motors can be categorised into 

electrical, mechanical and environmental faults [3]. Electrical 

faults can be divided into single phasing, over and under voltage, 

unbalance in supply voltage, inter-turn short circuit and power 

frequency variation faults. Broken rotor bar, bearing damage, 

rotor mass unbalance and air gap eccentricity are some 

classifications of mechanical faults. Ambient temperature, 

external moisture, vibration of motor due to installation defects 

and foundation defects affecting the performance of the induction 

motor are classified under environmental faults.  The percentage 

failure components of the induction motor are shown in Figure 1 

[5]. These were surveys conducted by the Institutes of Electrical 

and Electronics Engineers (IEEE) and the Electric Power 

Research Institute (EPRI). From Figure 1, it can be observed that 

the major induction motor faults occur inside the stator windings 

as well as the rotating shaft. 

 

 
Figure. 1. Percentage of Various Induction Motor Faults 

Electrical Faults 

These faults are classified as stator and rotor faults. They occur 

mainly in the windings especially in the stator windings since 

they are more susceptible to faults. Figure 2 shows a diagram of 

a damaged stator winding of a 3-phase induction motor [8]. 

 

 
Figure 2. Damaged Stator of a 3-Phase Induction Motor 

 

As a result of the stator coil and rotor striking the stator of the 

induction motor, the top sticks may loosen and damage the copper 

conductors and their insulation, thereby resulting in stator 

winding faults. Also, if due to power fluctuations the induction 

motor is subjected to a number of starts and stops, the temperature 

of the windings will rise above the temperature limit of the 

induction motor and consequently destroy the motor insulation. 

Figure 3 is a diagram of burnt stator windings due to inter-turn 

short-circuit and short-circuit between the stator winding and 

stator core [13].  

  
(a) Short-Circuit Between Winding and Core 

 

    
(b)  Inter-Turn Fault 

Figure 3. Burnt Stator Windings Due to Stator Faults 

 

Mechanical Faults 

 

According to the survey conducted by the Electric Power 

Research Institute (EPRI), it was deduced that mechanical faults 

contributed to approximately 41% of induction motor faults. 

Broken rotor bar and rotor mass unbalance are the main 

mechanical faults. Broken rotor bar faults in 3-phase induction 

motors occur when a bar of the rotor of an induction motor is 

broken partially or completely. This is mainly caused by the 

addition of heavy end rings to the rotor construction which 

introduce large centrifugal forces with extra stresses that may 

cause the breakage of the rotor bar [9]. Moreover, if the motor is 

made to run for a longer period, any of the bars of the rotor may 

get cracked. This introduces the asymmetrical distribution of 

rotor currents. As such, there will be overheating in the cracked 

part which may eventually cause the breakage of the bar. 

Consequently, the other sidebars will be made to carry a higher 

amount of current as a result of the breakage of the single bar and 

this may subject the sidebars to larger mechanical and thermal 

stresses [7]. If the motor is allowed to run in this condition for a 

longer period, the sidebars may also get cracked and thus, damage 

may spread through the entire rotor causing the breakage of 

multiple bars. The main effect of broken rotor bar is the 

introduction of a ripple effect in the torque and speed of the motor 

[7]. This ripple effect can be computed using (1) [8]. 

 

(1 2 )rf f ks=                      (1) 

 

Rotor mass unbalance is caused by a phenomenon called air-gap 

eccentricity. This occurs when the rotor is not aligned centrally to 

the stator, thereby causing a non-identical air-gap between the 

rotor and stator of the induction motor. Air-gap eccentricity 

causes the side of the rotor where there is a minimum air gap to 

experience greater electromagnetic pull while the opposite with 

maximum air-gap experiences lower electromagnetic pull and 



ROBERT AGYARE OFOSU / JURNAL NASIONAL TEKNIK ELEKTRO - VOL. 12 NO. 1(MARCH 2023) 

  https://doi.org/10.25077/jnte.v12n1.1047.2023 32 

hence, occurrence of rotor mass unbalance [9]. This 

electromagnetic pull that comes into play as a result of air-gap 

eccentricity may cause the rotor and stator to rub against each 

other. Consequently, due to friction, part of the rotor may wear 

out and cause rotor mass unbalance fault as shown in Figure 4. 

 

 
       (a) Pitting on Rotor Bar                (b) Rotor Eccentricity 

Figure 4. Rotor with Mass Unbalance Fault 

 

The main effect of rotor mass unbalance is that there will be 

oscillation in the air-gap. This variation in the air-gap will cause 

variations as it is been induced in the stator winding. 

Consequently, the induced voltage variation will also cause stator 

current harmonics which can be computed in (2) [7]. 

 

(1 )
1s

k s
f f

p

 −
= + 

 
                   (2) 

 

Kohonen Self-Organising Map 

 

KSOM is a special class of Artificial Neural Network (ANN) that 

transforms complex high dimensional input data into simpler and 

easy to visualise output without loss of information. KSOM can 

deal with missing data, small-sized data and data with unlimited 

size. KSOM learns without being supervised; thus, it does not rely 

on predefined target outcomes to guide its learning but rather 

learns by observation. In order to be unsupervised, the neurons of 

the KSOM compete against themselves for the opportunity to 

present the characteristics of the input data. The formation of the 

KSOM algorithm involves steps as summarised in the flow chart 

of Figure 5. 

 

From the KSOM algorithm, the distance between the input and 

the output data is computed using (3) [14] as: 

 

( ) ( )i id x t w t= −                  (3) 

 

After computing the distance, the winning output neuron is 

computed using the minimum Euclidean criterion given in (4) 

[14]  

 

 ( )  arg min ( ) ic t x t w= −                  (4) 

 

KSOM has only two layers: Input and output layers connected by 

their associated weight vectors. The input layer neurons represent 

the variables of the input data.  

 
Figure 5. Flowchart of Kohonen-Self Organising Map 

 

Figure 6 is a graphical representation of the KSOM.  In training 

the KSOM, a batch training algorithm is preferred [14]. In batch 

training, the whole dataset is used to train the map 

simultaneously. The batch training algorithm has no time-

variable learning rate parameter, therefore, making the batch 

training algorithm faster than any other training algorithm [14]. 

In using the batch training algorithm, 2-phase learning namely, 

coarse training and fine training are utilised in training the 

KSOM. The input dataset is first trained using coarse training 

after which the fine training phase continues until the corrections 

to the KSOM become approximately zero. 

 
Figure 6. Graphical Representation of KSOM 

 

Accuracy of the KSOM is the ability of the SOM to produce 

simpler, easy to visualise low dimensional representations of 

complex high dimensional data without information loss during 

the process. Quantisation Error (QE) is utilised in determining 

how accurate each condition of the induction motor would fit onto 

the KSOM. The accuracy and error of the SOM in terms of its 

ability to represent each condition of the induction motor on the 

map are computed using (5) and (6) [14] as: 

1/QE T=                 (5) 

(1 ) 100Acurracy QE= −                   (6) 
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METHOD 

In this paper, the KSOM was utilised as a diagnostic tool for 

detecting, diagnosing and classifying faults in the 3-phase 

induction motor. Firstly, using MATLAB/Simulink software, the 

induction motor was modelled in both healthy and faulty 

conditions. The stator current which is a characteristic of an 

induction motor condition was the priority. The KSOM should be 

able to efficiently learn and extract all the characteristics of each 

condition of the modelled induction motor. To replicate the exact 

condition on a 2-dimensional map once that condition is detected 

and diagnosed, the 3-phase rotor currents, speed and torque 

together with the 3-phase stator currents were acquired from the 

modelled induction motor and were stored as a MATLAB dataset. 

The acquired dataset from the induction motor was then fed to the 

KSOM for training and validation. The KSOM then extracted all 

the features from the induction motor dataset and classified each 

condition on a 2-dimensional map for the purpose of 

visualisation. 

 

Model Design of 3-Phase Induction Motor 

 

The usefulness of the modelling equations was realised in the 

MATLAB/Simulink model of the 3-phase induction motor [4]. 

Preset models of the induction motor have been provided in 

MATLAB/Simulink and these models have parameters based on 

the modelling equations that mimic the real industrial induction 

motor. In this paper, the parameters of the preset model of the 3-

phase induction motor that was utilised in the simulations is 

provided in Table 1. 

 

Table 1. Model Parameters of 3-Phase Induction Motor 

Parameter Value 

Power (kW) 4 

RMS Voltage (V) 400 

Frequency (Hz) 50 

Rotor Speed (RPM) 1430 

Stator Resistance (Ω) 1.405 

Rotor Resistance (Ω) 1.395 

Stator Inductance (H) 0.005839 

Rotor Inductance (H) 0.005839 

Mutual Inductance (H) 0.1722 

Pole Pairs  2 

Input Mechanical Load Torque (Nm) 26.72 

Peak Voltage (V) 326.54 

Rotor Inertia (kgm2) 0.0131 

 

For the selected preset model as specified in Table 1 to mimic a 

real induction motor, a 3-phase voltage source block was used as 

the supply to the induction motor. The source was connected in a 

star configuration with each of the three phases having a peak 

value of 326.6 V, a frequency of 50 Hz and displaced 120° from 

each other. The peak value of each phase was as a result of the 

induction motor having a 400 V RMS rating and was computed 

using (7) [15]. 

2

3

rms
p

V
V =                 (7) 

 

The supply passed through a 3-phase VI measurement block 

before it was fed to the induction motor. The VI block measured 

the 3-phase voltage and current of the voltage source. Scope and 

display blocks were connected to the VI block to show the voltage 

and current values. 

 

When the induction motor was ran, the 3-phase stator currents, 

rotor currents, speed and torque generated were displayed in the 

three scopes labelled stator currents, rotor currents, speed and 

torque, respectively. The gain block connected to the speed and 

torque scopes converted the speed of the induction motor from 

radians per second to revolutions per minute. The speed in radians 

per second was multiplied by in the gain block to get the speed in 

revolutions per minute. The stator currents, rotor currents, speed 

and torque were stored as a MATLAB file and fed to the designed 

KSOM model. The Simulink model of the designed system is 

shown in Figure 7. 

 
Figure 7. Simulink Model of the Designed System 

 

Design of the Kohonen Self-Organising Map 

 

The design of the KSOM model was done by using programming 

codes from the SOM toolbox imported into MATLAB/Simulink. 

The toolbox had inbuilt functions that were used to implement the 

KSOM algorithm. Flow chart of the KSOM of how the codes 

were written in creating, training and validating the KSOM model 

is shown in Figure 8. 

 
Figure 8. Flow chart of the Developed Kohonen Self-Organising 

Map 
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Pre-Processing of Induction Motor Input Dataset 

 

The input dataset namely, the 3-phase stator currents, 3-phase 

rotor currents, speed and torque of the induction motor that 

represented each of the modelled operational conditions of the 

induction motor were pre-processed by dividing each of the input 

samples by the highest value in the sample. Each of the input 

datasets had its own unit of measurement as such, the pre-

processing was done to bring all the input datasets to a common 

scale and also to ensure that the input dataset was verified and 

validated and did not contain any outliers that may have been 

caused by systematic errors. 

 

Initialising the Kohonen Self-Organising Map 

 

In the initialisation stage, the size of the map, the shape of the 

neurons, the neighbourhood radius as well as the number of 

epochs which represented the number of times the model was 

trained were all defined. The map size was set to a   two-

dimensional unit neuron map. This size was chosen to make the 

map large enough in order to accommodate all the input dataset 

that represented the various operating conditions of the induction 

motor. The neurons were arranged on the map to represent a low-

dimensional projection of the features of each of the operational 

conditions of the induction motor. The shape of the neurons was 

chosen to be hexagonal. The hexagonal shape was chosen 

because, it was the shape that was able to accommodate all the 

features of a sample from the input dataset that represented an 

operational condition of the induction motor. 

 

The neighbourhood radius that defines the neighbours of each of 

the neurons was set to 0.4. This value was chosen because it was 

the accepted value that was utilised in the toolbox for SOM 

implementation. The number of epochs that represented the 

number of times the KSOM was trained was set to 50 and 10 for 

the first and second phases of training, respectively. Figure 9 is a 

diagram of the initialised KSOM. 

 

 
Figure 9. Initialised Kohonen Self-Organising Map 

 

Training the Kohonen Self-Organising Map 

 

The KSOM was trained for the map to learn each of the 

operational conditions of the induction motor from the input 

dataset. Batch computation was employed for the training of the 

map. The numerical values of stator currents, rotor currents, 

speed as well as torque obtained during the simulation of the 

designed model under various operational conditions of the 

induction motor were utilised in training the KSOM. A total of 8 

input samples as shown in Figure. 9 with each representing an 

operational condition of the induction motor were used for the 

training. For a faster computational time, the batch training 

algorithm was divided into two training phases namely, coarse 

training and fine training. 

 

During the coarse training, the weight vectors that served as links 

between the input dataset and the output of the neurons of the map 

were randomly selected from the input data set. Because the 

learning process did not depend on predefined target outcomes 

that guided the learning process, the output neurons of the map 

had to compete against themselves in order to represent the input 

dataset on the output of the map. To find the output neurons that 

best represented the features which were the stator currents, rotor 

currents, speed and torque of the input dataset, the distance 

between the input dataset and the weight vectors were computed 

using the Euclidean distance method given in (3). 

 

After computing the distance, the winning output neuron was 

computed using the minimum Euclidean criterion given in (4). 

The weight vectors associated with the winning neurons and its 

neighbouring neurons were adjusted to become more 

representative of the features that characterised the input dataset. 

This was done by using the batch training algorithm given in (8) 

[14] as: 

 

1

( )

( 1)

( )

n

i j

j i

i n

i

j

h t x

m t

h t

=

=

+ =




                (8) 

 

Validating the Kohonen Self-Organising Map 

 

To ascertain whether or not the trained KSOM would be able to 

detect, diagnose to know the type of condition of the induction 

motor, whether healthy or faulty and classify the various 

conditions of the induction motor on the same 2-dimensional 

map, an induction motor  different from the one used to train the 

KSOM was modelled under various fault conditions and the 

dataset in terms of stator currents, rotor currents, speed and torque 

were acquired and labelled as the dataset from an unseen 

induction motor. The training dataset and the dataset from the 

unseen motor were combined to form a total of 17 input samples 

and were then fed to the trained KSOM for fault detection and 

classification.     

 

Accuracy of the Kohonen Self-Organising Map  

 

The accuracy of the KSOM had to do with the ability of the map 

to produce simpler, easy to visualise low dimensional 

representations of complex high dimensional input datasets that 

were utilised for the map’s training and validation without 

information loss during the process. The accuracies of both the 

training and the validating datasets were calculated 

mathematically using quantisation error as shown in (5) and (6). 

 

Simulation of Induction Motor Faults 

 

After the normal operation of the 3-phase induction motor had 

been simulated, the simulation of the various faults that the 3-

phase induction motor can be susceptible to, was next in line.  The 

faults that were simulated were; power frequency variation, single 

phasing, over voltage, voltage unbalance, single phase to ground 

short-circuit, 2-phase to ground short-circuit, 3-phase to ground 

short-circuit and inter-turn short circuit. In each fault condition, 

the stator current, rotor current, speed and torque of the induction 
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motor were recorded and stored as a dataset. Rotor faults were not 

simulated but rather it was the stator side of the induction motor 

that was simulated and fed to the KSOM due to the fact that any 

fault occurring in the rotor would produce a corresponding 

signature in the stator by transformer action. In all the faults 

simulated, the stator current, rotor current, speed and torque of 

the induction motor were recorded between 0.2 and 2 seconds 

after steady state of the induction motor were achieved. 

 

Power Frequency Variation Fault 

 

In practice, the frequency of the supply of the 3-phase induction 

motor is supposed to be   50 Hz, any frequency other than this 

will subject the 3-phase induction motor to power frequency 

variation fault. This fault was simulated by changing the 

frequency of the preset model of the induction motor from 50 Hz 

to 60 Hz. 

 

Single Phasing Fault 

 

Single phasing fault occurs in practice, when any of the three 

phases of the stator winding is lost, in effect making that 

particular phase’s voltage equivalent to zero [16]. The single 

phasing fault was simulated by setting any one of the phases of 

the preset induction motor to zero. 

 

Unbalance in Supply Voltage 

 

Different magnitudes of voltage in any one of the three phases of 

supply lead to voltage unbalance fault, as each of the phases of 

the supply must have equal magnitudes. In practice, a blown fuse 

in any of the phases of the supply causes a voltage unbalance 

fault. Fault due to unbalance in supply voltage was simulated by 

only changing the voltage magnitude in any one of the phases of 

the voltage supply to the preset 3-phase induction motor model. 

A change in voltage magnitude above or below in any of the 

phases of the supply may lead to failure of the 3-phase induction 

motor, as such unbalance in supply voltage fault was created by 

reducing phase A of the supply voltage by 6%, increasing the 

phase B of the supply by 8% and reducing the phase C of the 

supply by 10% and the results were computed in (9) [15] as:  

 

 

6

100
Ra a aV V V

 
= −  

 
                 (9) 

6
326.60 326.60

100
RaV

 
= −  

 
  

307.004 VRaV =   

 

Over Voltage 

 

In practice, a phase voltage in the stator windings greater than the 

rated voltage results in over voltage fault. When any of the phases 

of the supply voltage has a voltage greater than the rated voltage 

of the 3-phase induction motor this fault emerges. A change in 

voltage magnitude in any of the phases of the 3-phase induction 

motor above 5% leads to failure of the induction motor. As such, 

the over voltage fault was simulated by increasing the magnitude 

of phase A of the supply voltage by 6% and the results were 

computed in (10) [15] as: 

 

6

100
Ra a aV V V

 
= +  

 
               (10) 

6
326.60 326.60

100
RaV

 
= +  

 
  

346.196RaV = V  

 

Single Phase to Ground Short-Circuit Fault 

 

In practice, a single phase to ground fault occurs when there is a 

leakage current path between any of the phases of the stator 

winding input voltage and the ground. Single phase to ground 

fault was simulated by short-circuiting any of the input phases to 

ground using the 3-phase fault block in Figure 7.   

 

2-Phase to Ground Short-Circuit Fault 

 

When any two of the stator phases are shorted causing current to 

be channelled to ground, 2-phase to ground short-circuit fault 

occurs in practice. This fault was simulated by selecting any two 

phases and the ground from the 3-phase fault block connected to 

the induction motor model in Figure7. This caused the current to 

be channelled from the two selected input phases to the ground 

causing current to be supplied from the unselected input phase 

only to the induction motor. 

 

3-Phase to Ground Short-Circuit Fault 

 

When all the phases of the input were shorted causing all or 

greater percentage of the stator current to be channelled to the 

ground, then this fault occurred. Simulation of 3-phase to ground 

short-circuit fault was done by short-circuiting all the phases of 

the input voltage to ground by way of selecting all the phases and 

the ground in the 3-phase fault block in Figure7. 

 

Inter-Turn Short-Circuit Fault 

 

Inter-turn short-circuit occurs between turns of the same slots of 

the stator winding. The resistance and inductance of the stator of 

the preset 3-phase induction motor in Figure 7 were 1.405 Ω and 

0.005839 H, respectively. These values of resistance and 

inductance were what was obtained when the motor is operating 

under normal conditions. To simulate the 3-phase induction 

motor under inter-turn short-circuit fault, (11) [15] was utilised 

as: 

 

, ,

, ,

stator normal stator normal

stator fault stator fault

R L

R L
= =               (11) 

 

The value of ,stator faultR  was assumed to be 0.008 Ω which is 

extremely less than ,stator normalR . The small value of  ,stator faultR  

implies that, the stator resistance has reduced extremely and thus, 

more stator current can flow through the stator windings. Thus, 

the value of stator fault inductance was computed using (11) ([15] 

as: 

,

0.005839 0.008
0.00003325 

1.405
stator faultL H


= =                    (12)  
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The 3-phase induction motor was operated normally however, 

after 0.2 seconds, the faulted stator resistance and inductance 

were replaced with the normal stator resistance and inductance, 

respectively. After 1 second, the stator current, rotor current, 

speed and torque of the induction motor were read and recorded. 

 

Unseen 3-Phase Induction Motor 

 

To ascertain whether or not the trained KSOM would be able to 

detect, diagnose and classify faults in any other 3-phase induction 

motor apart from the induction motor that was utilised for its 

training, another 3-phase induction motor based on parameters of 

a real industrial motor was modelled. Afterward, power 

frequency variation, single phasing, over voltage, voltage 

unbalance, single phase to ground short-circuit, 2-phase to ground 

short-circuit, 3-phase to ground short-circuit and inter-turn short 

circuit faults were simulated. The 3-phase stator currents, rotor 

currents, speed and torque of each fault condition were recorded 

to form a total of 9 induction motor input datasets. The 9-input 

samples with each representing a fault condition were then fed to 

the trained KSOM for fault detection and classification. The 

model parameters that were used in modelling the unseen motor 

has been provided in Table 2. 

 

Table 2. Model Parameters of 3-phase Induction Motor 

Parameter Value 

Power (kW) 15 

RMS Voltage (V) 400 

Frequency (Hz) 50 

Rotor Speed (RPM) 1460 

Stator Resistance (Ω) 0.5968 

Rotor Resistance (Ω) 0.6258 

Stator Inductance (H) 0.0003495 

Rotor Inductance (H) 0.005473 

Mutual Inductance (H) 0.354 

Pole Pairs  2 

Input Mechanical Load 

Torque (Nm) 

98.12 

Peak Voltage (V) 326.54 

RESULTS AND DISCUSSION 

The 3-phase induction motor was successfully modelled in 

healthy and faulty conditions using MATLAB/Simulink. The 

results in terms of stator currents, rotor currents, speed and torque 

of the motor were presented in the form of graphs and the findings 

of the research were discussed. 

 

Results for Normal Operation of the 3-Phase Induction Motor 

 

The 3-phase stator currents, rotor currents, speed and torque are 

indicative of the health of the 3-phase induction motor. Figure 10, 

Figure. 11 and Figure. 12 are the graphs of the 3-phase stator 

currents, rotor currents, speed and torque of the healthy 3-phase 

IM, respectively. 

 

 
Figure 10. 3-Phase Stator Currents of Healthy Induction Motor 

 

After 0.1 seconds, steady-state was reached and the stator currents 

were perfectly sinusoidal. The stator currents also had the same 

amplitude in all the 3-phases. This is indicative of the healthy 

state of the motor. 

 

 
Figure 11. 3-Phase Rotor Currents of Healthy Induction Motor 

 

The rotor currents had fewer cycles due to slip. However, after 

steady state was attained, all the phases had the same amplitude 

and perfectly sinusoidal, which is indicative of the healthy state 

of the induction motor. 

 

The 3-phase induction motor model utilised, had a rated speed of 

1430 RPM. After the steady-state was reached, the expectation 

was that the speed of the heathy 3-phase induction motor reaches 

its rated speed of 1430 RPM and stays in that state without any 

fluctuation. The torque of the induction motor was also expected 

to reach a constant value of 26.7 Nm and stay in that state 

throughout the whole time without any fluctuations. All these 

features that are indicative of the healthy condition of the 

induction motor were exhibited in the speed and torque of the 3-

phase induction motor graph in Figure. 12. 

 

 
Figure. 12 Speed and Torque of the Healthy 3-Phase Induction 

Motor 

 

Results Of Various Induction Motor Faults Simulations 

 

The results obtained from simulating the 3-phase induction motor 

under various fault conditions are presented as follows:   

 

 

 

 

Power Frequency Variation Fault 
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When this fault was simulated, the magnitudes of the stator and 

rotor currents as well as the magnitudes of the speed and torque 

of the motor compared to that of the healthy motor were 

increased. This was as a result of the increased magnitude of the 

output voltage and voltage drop of the motor. Eventually, this 

may lead to core losses and poor efficiency which may cause the 

load-carrying capacity of the induction motor to reduce. 

Comparing the graphs of the stator and rotor currents in Figure 

13 under power frequency variation to that of the motor in healthy 

condition, it can be seen that the number of cycles is increased in 

this case thereby, causing a lot of fluctuations in the system.  

Figure. 13 is the graph of the stator and rotor currents, 

respectively under the power frequency variation fault.    

 

The corresponding graphs of speed and torque graphs of the 

induction motor under power frequency variation are given in 

Figure 14. The recorded values of speed and torque were 1460 

RPM and 26.62 Nm, respectively. It can be seen that these values 

deviated from that of the healthy induction motor and this was as 

a result of the increased frequency. The increased frequency 

caused the speed to increase dangerously while the torque 

decreased. 

 

 
Figure. 13 3-Phase stator and rotor currents under power 

frequency variation fault 

 

 
Figure 14. Speed and Torque of Induction Motor under Power 

Frequency Variation 

 

Single Phasing Faults 

 

When single phasing fault was simulated, the magnitude of the 

stator and rotor currents of the opened phase becomes small. The 

currents in the other two phases, however, increased to 

approximately 2.4 times greater than the nominal currents of the 

healthy induction motor. Single phasing fault can subject the 

induction motor to vibrations and noise due to uneven torque 

produced in the air-gab of motor. Comparing the graphs of the 

stator and rotor currents of the motor under single phasing to that 

of the motor under healthy conditions, it can be seen that the stator 

and rotor currents in single phasing are not perfectly sinusoidal 

but rather pulsating. Figure 15 is the graphs of the stator and rotor 

currents under single phasing fault. 

 

 
Figure 15. 3-Phase Stator and Rotor Currents under Single 

Phasing Fault 

 

The corresponding speed and torque graphs obtained under this 

condition are given in Figure 16. From the graph, the values of 

speed and torque were 1424 RPM and 28.82 Nm which are 

deviations from that of the healthy induction motor. Due to 

differences in flux between the stator and rotor, the speed and 

torque pulsated and their waveforms were not sinusoidal. 

 

 
Figure. 16. Speed and torque of motor under single phasing fault 

Unbalanced Voltage Supply Fault 

 

The fault of unbalanced supply voltage caused the stator and rotor 

currents to be unbalanced. The unbalanced currents resolved into 

positive, negative and zero sequence components. The positive 

sequence currents produced positive torque and the negative 

sequence currents produced negative torque opposite the 

direction of the positive sequence torque. The net torque got 

reduced due to the effect of unbalanced stator currents. 

Comparing the graphs of the stator and rotor currents in Figure. 

17 to that of the motor under healthy condition, it can be seen that 

under unbalanced voltage the currents in each phase have 

different magnitudes and also are pulsating. This fault causes 

overheating which can eventually result into burning of the motor 

windings. Figure 17 is the graph of the stator and rotor currents, 

respectively under unbalanced voltage supply fault conditions. 

 

The corresponding speed and torque graphs obtained under this 

condition are shown in Figure. 18. The speed of the motor under 

unbalance voltage fault pulsated and reduced from the normal to 

1420 RPM. The torque also oscillated dangerously due the 

unbalanced voltage that was supplied to the motor. 
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Figure 17 3-Phase Stator and Rotor Currents of Motor Under 

Unbalanced Supply Voltage 

 

 
Fig. 18 Speed and Torque of Induction Motor under Unbalance 

Voltage 

 

Over Voltage Fault 

 

When the over voltage fault occurred, the stator and rotor currents 

magnitude became higher due to the fact that the motor was ran 

at a voltage higher than its rated voltage. This may lead to the 

generation of noise and vibration in motor. The motor may end 

up with more losses due to the drawing of high currents and 

reduced efficiency. Comparing the graphs of the stator and rotor 

currents under this condition to that of the motor under healthy 

condition, it can be seen that the magnitudes of currents under this 

condition are higher, pulsating and not perfectly sinusoidal. 

Figure 19 is a graph of the stator and rotor currents, respectively 

of the motor under over voltage fault condition. 

 

 
Figure. 19 3-Phase stator and rotor currents of induction motor 

under over voltage 

 

Single Phase to Ground Short-Circuit Fault 

 

A short-circuit is a direct contact between two points of different 

electrical potentials. When this fault was simulated 0.5 seconds 

after the normal running of the motor, there was a sudden surge 

of current in the phase that was shorted to ground. As such, the 

stator and rotor current magnitudes in each phase were different, 

pulsating and not perfectly sinusoidal which was as a result of the 

difference between the stator and rotor fluxes. This condition may 

lead to the generation of excessive heat which may eventually 

damage the motor. Figure 20 is a graph of the stator and rotor 

currents, respectively of the motor under single phase short-

circuit fault. 

 
Figure 20. 3-Phase Stator and Rotor Currents of Motor Under 

Phase short-circuit 

 

2-Phase to Ground Short-Circuit Fault 

 

Any two phases of the motor were shorted to ground. 

Consequently, an excessive amount of current was drawn from 

the supply voltage. The stator and rotor currents exhibited 

irregularities in their waveform patterns as compared to that of 

the motor under healthy condition during the entire time when the 

fault was inserted. Figure 21 is the graphs of the stator and rotor 

currents, respectively of the motor under 2-phase to ground short-

circuit. fault.  

 

 
Figure. 21 3-Phase Stator and Rotor Currents of Motor Under 2-

Phase Short-Circuit 

3-Phase to Ground Short-Circuit Fault 

 

After running the induction motor for half a second, all the three 

phases of the supply voltage were shorted to ground. As such, the 

stator and rotor of the motor received a small amount of current. 

The stator and rotor of the motor would not have received any 

current at all if the fault were allowed to persist thereby bringing 

the motor to a standstill eventually. The graphs of the stator and 

rotor currents of the motor under this condition is shown in Figure 

22. 

 

 
Figure 22. 3-Phase Stator and Rotor Currents of Motor Under 3-

Phase Short-Circuit 
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Inter-Turn Short-Circuit Fault 

 

From the stator and rotor currents graphs shown in Figure. 23, it 

can be seen that when this fault occurred, the magnitudes of the 

stator and rotor currents went dangerously high as opposed to 

when the motor was running under healthy conditions. This fault 

when allowed to persist for a significant amount of time may 

cause overheating of motor windings, generate sparks, vibration, 

high noise levels and eventual damage of motor. 

 

 
Figure. 23 3-Phase Stator and Rotor Currents Under Motor 

Inter-Turn Fault 

 

Results of Training and Validation of the Model 

 

The numerical values of stator currents, rotor currents, speed as 

well as torque obtained during the simulation of the designed 

model under various operational conditions of the induction 

motor were utilised in training the KSOM. A total of 9 input 

samples with each sample representing a different operational 

condition of the 3-phase induction motor were utilised in training 

the model. The model used 20 seconds to learn each of the 

conditions of the inputs that were utilised for its training.  

 

Using quantisation error, the error in terms of the trained model’s 

ability to represent each operational condition of the 3-phase 

induction motor was calculated to be 11.11% and thus, the overall 

accuracy of the trained model was calculated to be 88.89%. This 

error was as a result of only 9 inputs used to train the model. This 

implied that a larger number of inputs representing the 

operational conditions of the induction motor fed to the model 

would increase the model’s accuracy, as the error is inversely 

proportional to the number of inputs. To validate the trained 

model, a preset induction motor labelled as an “unseen motor” 

different from the induction motor that was used to train the 

SOM, was modelled using MATLAB/Simulink in different 

operational conditions. A total of 8 input samples with each 

sample representing an operational condition on the induction 

motor was utilised in validating the trained model.  

 

The training dataset together with the dataset from the unseen 

induction motor, collectively resulted into 17 input samples, with 

each sample representing an operational condition of the 3-phase 

induction motor were fed to the trained model to ascertain how 

the trained KSOM would adapt to the unseen motor and detect, 

diagnose and classify each fault condition on a 2-dimensional 

map, for easy identification and visualisation. The results of the 

model’s detection and classification of faults on a 2-dimensional 

map are shown in Figure 24. 

 

 
Figure. 24 Results of the Model’s Detection and Classification 

of Faults 

 

Discussion of Results 

 

The KSOM algorithm proved that faults in 3-phase induction 

motors could be easily detected, diagnosed to know the kind of 

fault and the results displayed on a 2-dimensional map for 

identification and visualisation. In training the SOM with the 8 

input samples, the batch computation was utilised in the 

algorithm, as such it was observed that it took approximately 20 

seconds for the KSOM to learn and extracted all the features of 

the various operating conditions of the 3-phase induction motor. 

After the 8 input samples were used to train the SOM, the overall 

accuracy for the trained KSOM was calculated to be 88.89%. 

After feeding the trained SOM with both the training and datasets 

from the unseen induction motor, the model was able to adapt to 

the new conditions of the unseen motor, detected and classified 

the various faults using only 0.5 seconds while the accuracy of 

the output of the model was also calculated to be 94.12% which 

is an improvement on accuracy of that of the training dataset. The 

accuracy increased from 88.89% to 94.12% because the number 

of input samples also increased from 8 to 17 sample respectively. 

This proves that as the number of inputs increased, the error 

reduced and thus, the accuracy of the model increased. 

 

 From the map shown in Figure. 24, it was observed that the 

healthy condition of the induction motor was classified on the 

bottom right corner of the map as “HLT” with no other condition 

closer to it, and as such it was differentiated from the other 

conditions. Because the numerical values of stator and rotor 

currents, speed and torque of the induction motor in inter-turn 

short circuit fault condition were dangerously high, it was 

classified at the top right corner of the map as “ITF” and thus was 

totally differentiated from the other conditions. Power frequency 

variation was also clearly classified on the map as “PFV” with no 

other condition closer to it.  

 

Single phase short-circuit to ground in phases A, B and C (SAG, 

SBG, SCG), 2 phase short-circuit in phases A, B and C (SABG, 

SACG, SBCG), 3-phase short-circuit in all 3 phases (SABC), 

over voltages in Phases A, B, C (OVA, OVB, OVC) as well as 

unbalance in supply voltage (UV) faults were all classified at the 

bottom left corner of the map with each of these conditions being 

the neighbour of the other, thereby an indication of their 

similarities. However, short-circuit fault in phase C (SCG) and 

unbalance in supply voltage (UV) faults were both classified on 

the same node at the bottommost left corner of the map, indicating 

that, they both had the same statistical features. 
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CONCLUSIONS 

Kohonen Self-Organising Map Model has been successfully 

designed to detect, diagnose and classify induction faults. it has 

been shown that the trained KSOM adapted to the conditions of 

an unseen induction motor, detected and classified the faults in 

the unseen motor with a computational time of 0.5 seconds and 

an accuracy of 94.12% and the size of the map can be increased 

to accommodate any number of induction motor conditions, 

either healthy or faulty. It is therefore recommended that this 

technique should be employed in the control rooms of industries 

to monitor the health of induction motors to detect and diagnose 

faults even while they develop. 
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NOMENCLATURE 

rf  ripple frequencies 

sf   stator current harmonic 

f  supply frequency 

s   slip  

k   integer 

p  number of pole pairs 

 
id   Euclidean distance between sample x, 

 ( )iw t   weight vector at iteration t  

( )c t    winning neuron at iteration t  

 QE  quantisation error 

 T   number of input samples 

pV   peak value of the supply voltage per phase 

 
rmsV   RMS voltage rating of the induction motor.  

( 1)im t +  adjusted weight vector at iteration t 

 ( )ih t   neighbourhood kernel around the winner neuron  

jx   the old weight vectors 

RaV   resultant voltage in phase A 

aV   voltage in phase A  
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