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Traditionally, the maze solving robots employ ultrasonic sensors to detect the maze walls 

around the robot. The robot is able to transverse along the maze omnidirectionally measured 

depth. However, this approach only perceives the presence of the objects without recognizing 

the type of these objects. Therefore, computer vision has become more popular for classification 

purpose in robot applications. In this study, a maze solving robot is equipped with a camera to 

recognize the types of obstacles in a maze. The types of obstacles are classified as: intersection, 

dead end, T junction, finish zone, start zone, straight path, T–junction, left turn, and right turn. 

Convolutional neural network, consisting of four convolution layers, three pooling layers, and 

three fully-connected layers, is employed to train the robot using a total of 24,000 images to 

recognize the obstacles. Jetson Nano development kit is used to implement the trained model 

and navigate the robot. The results show an average training accuracy of 82% with a training 

time of 30 minutes 15 seconds. As for the testing, the lowest accuracy is 90% for the T-junction 

with the computational time being 500 milliseconds for each frame. Therefore, the 

convolutional neural network is adequate to serve as classifier and navigate a maze solving 

robot. 
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INTRODUCTION 

Over the last few decades, the interest in deep neural network has 

soared among researchers as it is able to tackle with a large 

amount of data. The applications of deep neural network 

encompass a range of fields by creating various artificial 

intelligence models, one of which is an image detection engine 

using a deep convolutional neural network (CNN). Basically, 

deep convolutional neural network works by extracting features 

in digital images. These key features of an image characterize a 

specific object that can be used to classify and discriminate 

against other objects. Several pre-processing stages such as image 

normalization and image segmentation are essential for the 

feature extraction process. The result of feature extraction is 

subsequently used for image classification or detection [1]. 

 

Deep neural networks play a variety of roles in many fields. In 

the health sector, deep convolutional neural networks are used to 

detect lungs disease [2], detect mask users as a pre-emptive 

measure against the spread of Covid-19 [3][4], and to recycle 

plastic waste such as nails and screws [3]. In the automotive field, 

deep convolutional neural networks are applied to recognize 

traffic signs and also responsible in the navigation of autonomous 

cars [4] - [6]. In addition, other applications such as human facial 

expression detection [7] and face detection for security can also 

take advantage of deep convolutional neural network [8] - [12].    

 

In robotic applications, neural network is widely used for maze 

mapping application [13] - [16]. As for the robot navigation, maze 

robots traditionally employ ultrasonic sensors to detect the 

circumstances around the robot - [17] and apply the right-handed 

algorithm to determine the robot's motion [18]. However, 

ultrasonic sensors has shortcomings as it can not recognize the 

type of objects ahead; therefore, difficult to visualize the grand 

picture of the maze. This study attempts to bridge that gap by 

replacing the distant-measuring approach with image processing 

method using a camera. An artificial neural network is used to 

help robots navigate in a maze. The dataset was captured directly 

using OpenCV with the amount of 24,000 images data. By 

utilizing convolution operations in digital image data, the robot 

can learn from the training data to recognize the types of obstacles 

being faced by the robot. Convolutional neural network extracts 

the characteristics of digital images through a multitude of hidden 

layers that are built so as to find a network model that is 

considered appropriate. Once the trained model is obtained, the 

robot is not only able to navigate but able to recognize the types 

of obstacles in the maze. Subsequently, this paper is organized as 

follow: section 2 explains the research method used in this study, 

section 3 presents the results and discusses the key findings and 

limitations, and section 4 concludes the work.  
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METHOD 

Experimental Stages 

Figure 1 shows the workflow used in this study. First, a webcam 

is used to capture the video frames and create the dataset, with 

each frame in the video recording being taken separately until 

collecting 3000 image data for each class. The capture is 

governed by Jetson Nano by means of program listings in the 

OpenCV library. The image dataset is grouped into 8 classes, 

namely intersection, dead end, T junction, finish zone, start zone, 

straight path, T–junction, left turn, and right turn. Each class 

contains 2500 training data, 430 validation data, and 70 test data. 

In digital image pre-processing, the original digital image is 

rescaled from 1080×720 pixels to 224×84 pixels. Subsequently, 

the image is converted from multiple channels to single channel 

by generating the grayscale images. Then, the collected image 

data are randomly selected and grouped as training data and 

validation data which will then be used for training in 

convolutional neural networks. The network model is composed 

by a multitude of hidden layers and functions. Some parameters 

within the network are finely tuned to yield the best outcome i.e., 

accuracy. Finally, the trained network model is tested to see if the 

robot can correctly classify the obstacles. 

 

 
Figure 1. Research Workflow 

 

The performance assessment is carried out by running the robot 

along the maze. The network model is embedded in the Nvidia 

Jetson Nano developer kit and equipped with a 720p30fps 

webcam. The test is carried out using 70 images for each class 

which are not previously used for training and validation. The 

detection results are then used for assessing the correctness of the 

robot's motion. The test results are expected that the robot is able 

to classify with an accuracy of 80% and move correctly based on 

the classification results. 

 

Hardware Setup 

The robot is constructed in three levels and equipped with two 

wheels for the locomotion drives. The robot is able to traverse 

according to the image classifier program. It was built in the form 

of 3-level robot car having two active wheels and one passive 

wheel. Figure 2 shows the schematic diagram of all hardware 

interconnections. All commands are processed in the Nvidia 

Jetson Nano developer kit which has a Quad-core ARM A57 

processor with a clock speed of 1.43 GHz, a 128-core Maxwell 

GPU, RAM of 4 GB, and internal storage of 64 GB. In addition, 

the robot is equipped with a 1080p Logitech C92 webcam, 

gearbox, Li-Po batteries, L298N motor drivers, and voltage 

regulators. 

 

 
Figure 2. Schematic Diagram 

 

Jetson Nano developer kit is employed to perform the image 

classification because of its high level graphics processing unit 

[19]. The outcome of this classification is used to determine the 

robot's motion using Python3 programming. In this study, the task 

of the convolutional neural network is to classify the 

circumstances to which the robot is approaching. These 

circumstances are divided into eight classes, namely the 

intersection, dead end, finish zone, start zone, straight path, T-

junction, left turn, and right turn. The image classification process 

begins when the robot is turned on and start capturing the image. 

The predetermined initial position is always located in one spot, 

i.e. the starting zone. Then, the convolutional neural network 

classifies the obstacles with respect to the captured image in front 

of robot. Having received the classification results, the robot 

determines the motion of each wheel to steer the robot 

accordingly, as shown in Table 1. Since the robot is driven by 

means of a pair of active wheels, then the locomotion is based on 

the differential drive method. For example, if the robot turns to 

the left, then the left motor must stop while the right motor moves 

forward. Similarly, if the robot rotates clockwise, then the left 

motor must move forward while the right motor moves backward. 

In this study, the robot applies the right-hand rule algorithm, 

meaning that it prioritizes turning right whenever it encounters 

two or more alternatives to pass through, such as intersections and 

T-junctions. In addition, if the robot encounters a dead end, it will 

rotate clockwise instead of move backward in order the webcam 

for capturing another class category. The robot repeats the 

commands and keeps moving until it reaches the finish zone and 

stops. 

 

To conduct the experiment, a 120cm×240cm maze was built from 

1-cm thick plywood with white walls and black floor, as depicted 

in Figure 3. The maze comprises of eight types of obstacles that 

will be learned by the robot as mentioned above. The design of 
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the maze was inspired by the realistic road, with white markers 

that can be a feature used in the neural network. 

Table 1. Instruction Table 

Classification Result 
Motor Output 

Left Right 

Intersection Forward Stop 

Dead End Forward Backward 

Finish Zone Stop Stop 

Start Zone Forward Backward 

Straight Path Forward Forward 

T-Junction Forward Stop 

Left Turn Stop Forward 

Right Turn Forward Stop 

 

 
 

Figure 3. The Maze 

 

Data Acquisition  

The data was acquired using a 1080p webcam and OpenCV 

library. The resulting images are in grayscale with dimension of 

224×84×1 pixel. The complete dataset is as much as 24,000 and 

divided into 8 classes for each training, validation, and testing 

data, as shown in Table 2.  The training and validation data were 

used together during the network learning stage, while the testing 

data were used to test the trained network. These testing data are 

not a subset of the training data nor validation data. 

 

Figure 4 shows the sample of image data for each class used for 

training and validation. The variation of images used in model 

training is constituted from a range of image point of views or 

different angle perspective captured by the camera. These images 

might be taken from the same video recording but at different 

sampling instants, some of which are blurry. These blurred 

images were still kept in dataset to train network even in the 

presence of distorted input to better infer under various 

circumstances. We can also notice in Figure 5 that the paths along 

the maze are marked with white stripes to help classify the 

circumstances. 

 

 

Table 2. The Number of Samples of Each Class 

No. Class 
Number of Samples 

Training Validation Testing 

1 Intersection 2500 430 70 

2 Dead End 2500 430 70 

3 Finish Zone 2500 430 70 

4 Start Zone 2500 430 70 

5 Straight Path 2500 430 70 

6 T-Junction 2500 430 70 

7 Left Turn 2500 430 70 

8 Right Turn 2500 430 70 

 

   

(a)   (b)   (c) 

   

(d)   (e)   (f) 

  

(g)   (h) 

Figure 4. Dataset Images: (a) Intersection, (b) Dead End, (c) 

Finish Zone, (d) Start Zone, (e) Straight Path, (f) T-Junction, (g) 

Left Turn, (h) Right Turn 

 

Convolutional Neural Network Modelling 

Prior to the training phase, the image is split into training and 

validation data. At this stage, the data is randomly split using 

features in the Tensorflow framework-Keras API with a ratio of 

85:15. This split ratio provides 2,500 and 430 data for training 

and validation, respectively. Then, these split data proceed with 

the augmentation process, which includes rescaling, width 

shifting, height shifting, and zoom range adjusting. These 

augmentations aim to make the data more flexible during training. 

 

Table 3. Convolutional Neural Network Architecture  

No. Layer Output Shape 

1 Convolution  (None, 222, 82, 6) 

2 Average Pooling (None, 111, 41, 6) 

3 Convolution (None, 109, 39, 16) 

4 Average Pooling (None, 54, 19, 16) 

5 Convolution (None, 52, 17, 32) 

6 Convolution (None, 50, 15, 32) 

7 Average Pooling (None, 25, 7, 32) 

8 Flatten (None, 5600) 

9 Dense (None, 120) 

10 Dense (None, 84) 

11 Dropout  (None, 84) 

12 Dense (None, 8) 
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The convolutional neural network architecture was selected by 

adopting several previously used architectures such as LeNet, 

AlexNet, ZF Net [20][21]. The first layer is convolution layer 

with 224×84 grayscale image data input. This layer uses a kernel 

size of 3×3, 16 channels, and a rectified linear unit (ReLu) 

activation function. The second and third layer employ the same 

layer model as before, and then followed by maxpooling layers 

with a filter size or kernel size of 2×2. The subsequent three layers 

use the same model with 32 channels. For the next three layers, 

64 channels are used, and then a flatten layer is utilized to convert 

the data dimension to 1×28800. The final layer is a fully-

connected layer that will be used for prediction and classification. 

The full architecture of the convolutional neural network is shown 

in Table 3. The model training process uses a total of 1,370,676 

parameters, equipped with Adam function as the optimization 

algorithm. In this study, the loss function is the cross-entropy as 

given in Equation 1. 

 

Loss = − ∑ 𝑡𝑖
𝑛
𝑖=1 log(𝑝𝑖)  (1) 

 

where ti is the target label and pi is the softmax probability for 

class i. This network architecture is chosen by heuristic approach, 

meaning that the selection is purely based on intuition and trial-

and-error practices.  

RESULTS AND DISCUSSION 

To demonstrate the performance, a number of indicators are used 

to assess the results. First, the training and validation accuracy are 

measured during the model learning stage. Then the trained 

network model is tested by applying a testing dataset not 

previously used during the training stage. The size of testing data 

is 70 images for each class. The result of model testing is 

represented in the form of an evaluation matrix. Finally, an 

experiment is done by demonstrating the maze solving robot in a 

real maze. 

Model Training  

The network model training is based on the hidden layer 

architecture as explained in Table 3. The training stage was 

carried out on a laptop with Intel i-7 processor, GPU RTX 3050, 

and 16 GB RAM. The training process run iteratively, with 30 

epochs being the upper bound of the training period. The value of 

the accuracy of the training results and the validation of each 

epoch is directly proportional to the quality of the model. 

Meanwhile, the loss indicates how well the model fits the training 

data or new data. In this study, we take advantage of the early 

stopping feature in keras.callbacks with a patience value of 6. 

This aims to take the best value and terminate the training process 

if the training result does not improve after the next 6 steps. This 

is also effective to avoid network overfitting [22]-[24]. 

 

Table 4. Model Training Process  

Epoch 
Accuracy Loss 

Train. Val. Train. Val 

1 0.3058 0.5384 1.7311 1.1263 

2 0.5078 0.5253 1.2420 1.0416 

3 0.5814 0.6599 1.0440 0.9691 

4 0.6243 0.7994 0.9452 0.7203 

5 0.6683 0.9119 0.8470 0.5213 

6 0.7061 0.9087 0.7715 0.5029 

7 0.7345 0.9174 0.7046 0.3578 

8 0.7522 0.8128 0.6608 0.5025 

9 0.7742 0.8788 0.6139 0.3414 

10 0.7878 0.9276 0.5777 0.2810 

11 0.8035 0.8407 0.5367 0.4696 

12 0.7213 0.9061 0.4995 0.2676 

13 0.8241 0.9052 0.4781 0.2504 

14 0.8339 0.8273 0.4591 0.5457 

15 0.8467 0.8724 0.4229 0.3141 

16 0.8560 0.8799 0.3993 0.3069 

17 0.8636 0.8294 0.3817 0.5430 

18 0.8724 0.8029 0.3534 0.7257 

19 0.8758 0.8666 0.3523 0.3760 

 

Table 4 implies that the best model training is at epoch 13 

(shaded), with a training accuracy of 82.41% and validation 

accuracy of 90.52%. This model is the best model because the 

validation loss is the parameter required for the early stopping 

feature by keras.callbacks. If the validation loss does not improve 

for the next 6 epochs, then the training process terminates. As we 

can see in Table 4, the validation loss of epoch 14 – 19 still greater 

than that of epoch 13. As a result, the training process stops at 

epoch 19 even though the maximum epoch is 30. 

 

Model Testing 

Upon completion of the training, the trained network was then 

tested with a set of data not previously used in the training stage. 

This to evaluate the extent of generalization of the trained 

network. The confusion matrix in Figure 5 states the quality of 

the model that allows visualization of the performance of the 

Convolutional Neural Network. The number of testing data for 

each class is 70, giving a total of 560 testing dataset. The quality 

of model is in accordance with the accuracy results in Table 4. 

The result representation is composed based on the confusion 

matrix variant 3 as explained in [25]. 

 

 
Figure 5. Confusion Matrix 

 

In details, labels 0-7 are the representations of the classes. Label 

0 represents the intersection class, with 70 correctly predicted 

data. Label 1 represents the dead-end class, with 70 correctly 

predicted data. Label 2 represents the finish zone, with 70 

correctly predicted data. Label 3 representing the start zone class, 

with 70 correctly predicted data. Label 4 represents the straight 

path class, with 70 correctly predicted data. Label 5 represents the 

T-junction class, with 62 correctly predicted data. The remaining 

8 incorrect prediction recognize the T-junction as a dead end, 
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giving an accuracy of 88.57%. This misclassification is mainly 

due to the similarity of the color distribution of the captured 

images between the two. As shown in Figure 4(b) and (f), the 

black parts have somewhat same shape and distribution on the 

image. So, in case of the webcam angle being tilted, this 

misclassification may occur. This Label 6 represents the left turn 

class, with 70 correctly predicted data. Lastly, label 7 represents 

the right turn class, with 70 correctly predicted data. Based on the 

results mentioned above, this model is sufficient to solve the maze 

despite being the first research employing convolutional neural 

network to help solve the maze. This affirms that the 

convolutional neural network is a powerful tool in image 

classification tasks; therefore, contribute its popularity in robotic 

applications [26]. 

 

Table 5 shows the precision, recall, and F1-score which is in 

agreement with the training results in Table 4. The metrics are 

formulated using Equation (2) – (4).  

 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (2) 

 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (3) 

 

F1-Score = 2 ×
Precision×Recall

Precision+Recall
  (4) 

 

 
where TP denotes True Positive, FP denotes False Positive, and 

FN denotes False Negative. These metrics becomes a reference 

for concluding the quality of the model. For example, a precision 

of 1 means that a False Positive is not found for that class. In 

determining the motion of the robot while solving the maze, the 

False Negative value becomes critical as it indicates the robot’s 

incapability to undertake the appropriate commands. As in the 

condition that the robot must do a U-Turn when it encounters a 

dead end, the robot may not do a U-Turn and cause failure in 

solving the maze if the number of False Negative is considerably 

high [27]. Throughout the classification process, the 

computational time is 50 ms for each video images frame. 

 

 

Table 5. Model Report  

Class Precision Recall F1-Score 

Intersection 1.00 1.00 1.00 

Dead End 0.90 1.00 0.95 

Finish Zone 1.00 1.00 1.00 

Start Zone 1.00 1.00 1.00 

Straight Path 1.00 1.00 1.00 

T-Junction 1.00 0.89 0.94 

Left Turn 1.00 1.00 1.00 

Right Turn 1.00 1.00 1.00 

 

Maze Solver Experiment 

The robot, with a Jetson Nano developer kit, runs the CNN model 

that is used to determine the motion of each wheel. The 

experiment was done twice, where the first was conducted off the 

maze, while the latter was conducted on the maze. The first test 

aims to evaluate the motor motion in response to the classification 

result. To do so, the robot was tested off the maze and the 

classification results were given by a specific hard-coded 

program with a range of recorded images, meaning that the 

classes inferred by the robot was not from the instantaneous 

webcam images. The robot’s response to the classification results 

gives the appropriate motor motion, and the success rate is sought 

using Equation (5). 

 

Success Rate =
Succesful response

Total trials
× 100%  (5) 

 

Table 6 shows that the motor motions are in accordance with the 

results of the classification carried out by the model with an 

overall success rate of 100%, with 10 trials for each class. These 

success rates of 100% are achieved because the CNN model is 

able to classify the previously-stored images in the Jetson Nano. 

For example, if the robot detects an intersection image, then the 

robot responds by rotating the left motor forward and stopping 

the right motor, as explained in [28].  

 

Table 6. Motor Motion Results  

Classification Result 
Motor Output Success 

Rate (%) Left Right 

Intersection Forward Stop 100 

Dead End Forward Backward 100 

Finish Zone Stop Stop 100 

Start Zone Forward Backward 100 

Straight Path Forward Forward 100 

T-Junction Forward Stop 100 

Left Turn Stop Forward 100 

Right Turn Forward Stop 100 

 

However, the first testing of CNN model on robot was carried out 

indirectly by using the recorded video images. So, the second test 

was conducted on the maze with the real-time image capturing 

from the webcam. It turns out that the robot moved wiggly along 

the given trajectory and failed to accomplish the navigation tasks. 

This is because the video images reading process using Python on 

the Jetson Nano developer kit experienced a decrease in the frame 

rate to as low as 2 frames per second, which causes the robot’s 

motion does not work properly in real-time capture and cause the 

robot not able to fully navigate along the maze. In light of these 

limitations, a number of measures can be considered to overcome 

this problem, such as: 

1.  Hardware selection, e.g. use a mini-computer that 

supports parallel processing to execute vector operation 

faster. 

2. AI model selection, e.g. employ network architecture 

that comprises fewer number of layers in the fully-

connecting to reduce computational load without 

sacrificing generalization. 

3. Parameter optimization, e.g. choose the proper frame 

rate that works well with the given development kit.   

CONCLUSIONS 

Convolutional neural network works properly for a maze solving 

robot to classify a variety of obstacles. The architecture of the 

convolutional neural network plays a critical role in obtaining a 

satisfactory accuracy. In this study, the selected architecture 

consists of four convolution layers, three pooling layers, and three 

fully-connected layers. The results show that accuracy reaches 

82.41% for training and 90.52% for validation. Meanwhile, the 
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testing accuracy shows that all classes are correctly predicted, 

except for T-junction with accuracy of 88.57%. If tested using 

recorded images, the robot’s motors can move in accordance with 

the results of the classification carried out by the model with an 

overall success rate of 100%. However, in the real-time maze 

solving experiment, the video images reading process is 

deteriorated due to the frame rate decline which leads to some 

delays in the real-time image capture. Instead of Nano, a 

minicomputer can be further explored for this application to 

overcome the hardware limitations. 
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