
JURNAL NASIONAL TEKNIK ELEKTRO - VOL. 12 NO. 2 (JULY 2023)

Available online at : http://jnte.ft.unand.ac.id/

Jurnal Nasional Teknik Elektro
| ISSN (Print) 2302-2949 | ISSN (Online) 2407-7267 |

https://doi.org/10.25077/jnte.v12n2.1091.2023 Attribution-NonCommercial-ShareAlike 4.0 International. Some rights reserved

An Embedded Convolutional Neural Network for Maze Classification and Navigation

Gunawan Dewantoro, Dinar Rahmat Hadiyanto, Andreas Ardian Febrianto

Department of Electronic and Computer Engineering, Satya Wacana Christian University, Salatiga, 50711 Indonesia

ARTICLE INFORMATION A B S T R A C T

Received: April 07, 2023

Revised: July 07, 2023

Accepted: July 07, 2023

Available online: July 31, 2023

Traditionally, the maze solving robots employ ultrasonic sensors to detect the maze walls

around the robot. The robot is able to transverse along the maze omnidirectionally measured

depth. However, this approach only perceives the presence of the objects without recognizing

the type of these objects. Therefore, computer vision has become more popular for classification

purpose in robot applications. In this study, a maze solving robot is equipped with a camera to

recognize the types of obstacles in a maze. The types of obstacles are classified as: intersection,

dead end, T junction, finish zone, start zone, straight path, T–junction, left turn, and right turn.

Convolutional neural network, consisting of four convolution layers, three pooling layers, and

three fully-connected layers, is employed to train the robot using a total of 24,000 images to

recognize the obstacles. Jetson Nano development kit is used to implement the trained model

and navigate the robot. The results show an average training accuracy of 82% with a training

time of 30 minutes 15 seconds. As for the testing, the lowest accuracy is 90% for the T-junction

with the computational time being 500 milliseconds for each frame. Therefore, the

convolutional neural network is adequate to serve as classifier and navigate a maze solving

robot.

KEYWORDS

Convolutional Neural Network, Maze, Classification,

Navigation, Robot

CORRESPONDENCE

Phone: +62 857 4343 8874

E-mail: gunawan.dewantoro@uksw.edu

INTRODUCTION

Over the last few decades, the interest in deep neural network has

soared among researchers as it is able to tackle with a large

amount of data. The applications of deep neural network

encompass a range of fields by creating various artificial

intelligence models, one of which is an image detection engine

using a deep convolutional neural network (CNN). Basically,

deep convolutional neural network works by extracting features

in digital images. These key features of an image characterize a

specific object that can be used to classify and discriminate

against other objects. Several pre-processing stages such as image

normalization and image segmentation are essential for the

feature extraction process. The result of feature extraction is

subsequently used for image classification or detection [1].

Deep neural networks play a variety of roles in many fields. In

the health sector, deep convolutional neural networks are used to

detect lungs disease [2], detect mask users as a pre-emptive

measure against the spread of Covid-19 [3][4], and to recycle

plastic waste such as nails and screws [3]. In the automotive field,

deep convolutional neural networks are applied to recognize

traffic signs and also responsible in the navigation of autonomous

cars [4] - [6]. In addition, other applications such as human facial

expression detection [7] and face detection for security can also

take advantage of deep convolutional neural network [8] - [12].

In robotic applications, neural network is widely used for maze

mapping application [13] - [16]. As for the robot navigation, maze

robots traditionally employ ultrasonic sensors to detect the

circumstances around the robot - [17] and apply the right-handed

algorithm to determine the robot's motion [18]. However,

ultrasonic sensors has shortcomings as it can not recognize the

type of objects ahead; therefore, difficult to visualize the grand

picture of the maze. This study attempts to bridge that gap by

replacing the distant-measuring approach with image processing

method using a camera. An artificial neural network is used to

help robots navigate in a maze. The dataset was captured directly

using OpenCV with the amount of 24,000 images data. By

utilizing convolution operations in digital image data, the robot

can learn from the training data to recognize the types of obstacles

being faced by the robot. Convolutional neural network extracts

the characteristics of digital images through a multitude of hidden

layers that are built so as to find a network model that is

considered appropriate. Once the trained model is obtained, the

robot is not only able to navigate but able to recognize the types

of obstacles in the maze. Subsequently, this paper is organized as

follow: section 2 explains the research method used in this study,

section 3 presents the results and discusses the key findings and

limitations, and section 4 concludes the work.

http://jnte.ft.unand.ac.id/
http://jnte.ft.unand.ac.id/
http://creativecommons.org/licenses/by-nc-sa/4.0/

GUNAWAN DEWANTORO / JURNAL NASIONAL TEKNIK ELEKTRO - VOL. 12 NO. 2 (JULY 2023)

https://doi.org/10.25077/jnte.v12n2.1091.2023 137

METHOD

Experimental Stages

Figure 1 shows the workflow used in this study. First, a webcam

is used to capture the video frames and create the dataset, with

each frame in the video recording being taken separately until

collecting 3000 image data for each class. The capture is

governed by Jetson Nano by means of program listings in the

OpenCV library. The image dataset is grouped into 8 classes,

namely intersection, dead end, T junction, finish zone, start zone,

straight path, T–junction, left turn, and right turn. Each class

contains 2500 training data, 430 validation data, and 70 test data.

In digital image pre-processing, the original digital image is

rescaled from 1080×720 pixels to 224×84 pixels. Subsequently,

the image is converted from multiple channels to single channel

by generating the grayscale images. Then, the collected image

data are randomly selected and grouped as training data and

validation data which will then be used for training in

convolutional neural networks. The network model is composed

by a multitude of hidden layers and functions. Some parameters

within the network are finely tuned to yield the best outcome i.e.,

accuracy. Finally, the trained network model is tested to see if the

robot can correctly classify the obstacles.

Figure 1. Research Workflow

The performance assessment is carried out by running the robot

along the maze. The network model is embedded in the Nvidia

Jetson Nano developer kit and equipped with a 720p30fps

webcam. The test is carried out using 70 images for each class

which are not previously used for training and validation. The

detection results are then used for assessing the correctness of the

robot's motion. The test results are expected that the robot is able

to classify with an accuracy of 80% and move correctly based on

the classification results.

Hardware Setup

The robot is constructed in three levels and equipped with two

wheels for the locomotion drives. The robot is able to traverse

according to the image classifier program. It was built in the form

of 3-level robot car having two active wheels and one passive

wheel. Figure 2 shows the schematic diagram of all hardware

interconnections. All commands are processed in the Nvidia

Jetson Nano developer kit which has a Quad-core ARM A57

processor with a clock speed of 1.43 GHz, a 128-core Maxwell

GPU, RAM of 4 GB, and internal storage of 64 GB. In addition,

the robot is equipped with a 1080p Logitech C92 webcam,

gearbox, Li-Po batteries, L298N motor drivers, and voltage

regulators.

Figure 2. Schematic Diagram

Jetson Nano developer kit is employed to perform the image

classification because of its high level graphics processing unit

[19]. The outcome of this classification is used to determine the

robot's motion using Python3 programming. In this study, the task

of the convolutional neural network is to classify the

circumstances to which the robot is approaching. These

circumstances are divided into eight classes, namely the

intersection, dead end, finish zone, start zone, straight path, T-

junction, left turn, and right turn. The image classification process

begins when the robot is turned on and start capturing the image.

The predetermined initial position is always located in one spot,

i.e. the starting zone. Then, the convolutional neural network

classifies the obstacles with respect to the captured image in front

of robot. Having received the classification results, the robot

determines the motion of each wheel to steer the robot

accordingly, as shown in Table 1. Since the robot is driven by

means of a pair of active wheels, then the locomotion is based on

the differential drive method. For example, if the robot turns to

the left, then the left motor must stop while the right motor moves

forward. Similarly, if the robot rotates clockwise, then the left

motor must move forward while the right motor moves backward.

In this study, the robot applies the right-hand rule algorithm,

meaning that it prioritizes turning right whenever it encounters

two or more alternatives to pass through, such as intersections and

T-junctions. In addition, if the robot encounters a dead end, it will

rotate clockwise instead of move backward in order the webcam

for capturing another class category. The robot repeats the

commands and keeps moving until it reaches the finish zone and

stops.

To conduct the experiment, a 120cm×240cm maze was built from

1-cm thick plywood with white walls and black floor, as depicted

in Figure 3. The maze comprises of eight types of obstacles that

will be learned by the robot as mentioned above. The design of

GUNAWAN DEWANTORO / JURNAL NASIONAL TEKNIK ELEKTRO - VOL. 12 NO. 2 (JULY 2023)

 https://doi.org/10.25077/jnte.v12n2.1091.2023 138

the maze was inspired by the realistic road, with white markers

that can be a feature used in the neural network.

Table 1. Instruction Table

Classification Result
Motor Output

Left Right

Intersection Forward Stop

Dead End Forward Backward

Finish Zone Stop Stop

Start Zone Forward Backward

Straight Path Forward Forward

T-Junction Forward Stop

Left Turn Stop Forward

Right Turn Forward Stop

Figure 3. The Maze

Data Acquisition

The data was acquired using a 1080p webcam and OpenCV

library. The resulting images are in grayscale with dimension of

224×84×1 pixel. The complete dataset is as much as 24,000 and

divided into 8 classes for each training, validation, and testing

data, as shown in Table 2. The training and validation data were

used together during the network learning stage, while the testing

data were used to test the trained network. These testing data are

not a subset of the training data nor validation data.

Figure 4 shows the sample of image data for each class used for

training and validation. The variation of images used in model

training is constituted from a range of image point of views or

different angle perspective captured by the camera. These images

might be taken from the same video recording but at different

sampling instants, some of which are blurry. These blurred

images were still kept in dataset to train network even in the

presence of distorted input to better infer under various

circumstances. We can also notice in Figure 5 that the paths along

the maze are marked with white stripes to help classify the

circumstances.

Table 2. The Number of Samples of Each Class

No. Class
Number of Samples

Training Validation Testing

1 Intersection 2500 430 70

2 Dead End 2500 430 70

3 Finish Zone 2500 430 70

4 Start Zone 2500 430 70

5 Straight Path 2500 430 70

6 T-Junction 2500 430 70

7 Left Turn 2500 430 70

8 Right Turn 2500 430 70

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 4. Dataset Images: (a) Intersection, (b) Dead End, (c)

Finish Zone, (d) Start Zone, (e) Straight Path, (f) T-Junction, (g)

Left Turn, (h) Right Turn

Convolutional Neural Network Modelling

Prior to the training phase, the image is split into training and

validation data. At this stage, the data is randomly split using

features in the Tensorflow framework-Keras API with a ratio of

85:15. This split ratio provides 2,500 and 430 data for training

and validation, respectively. Then, these split data proceed with

the augmentation process, which includes rescaling, width

shifting, height shifting, and zoom range adjusting. These

augmentations aim to make the data more flexible during training.

Table 3. Convolutional Neural Network Architecture

No. Layer Output Shape

1 Convolution (None, 222, 82, 6)

2 Average Pooling (None, 111, 41, 6)

3 Convolution (None, 109, 39, 16)

4 Average Pooling (None, 54, 19, 16)

5 Convolution (None, 52, 17, 32)

6 Convolution (None, 50, 15, 32)

7 Average Pooling (None, 25, 7, 32)

8 Flatten (None, 5600)

9 Dense (None, 120)

10 Dense (None, 84)

11 Dropout (None, 84)

12 Dense (None, 8)

GUNAWAN DEWANTORO / JURNAL NASIONAL TEKNIK ELEKTRO - VOL. 12 NO. 2 (JULY 2023)

https://doi.org/10.25077/jnte.v12n2.1091.2023 139

The convolutional neural network architecture was selected by

adopting several previously used architectures such as LeNet,

AlexNet, ZF Net [20][21]. The first layer is convolution layer

with 224×84 grayscale image data input. This layer uses a kernel

size of 3×3, 16 channels, and a rectified linear unit (ReLu)

activation function. The second and third layer employ the same

layer model as before, and then followed by maxpooling layers

with a filter size or kernel size of 2×2. The subsequent three layers

use the same model with 32 channels. For the next three layers,

64 channels are used, and then a flatten layer is utilized to convert

the data dimension to 1×28800. The final layer is a fully-

connected layer that will be used for prediction and classification.

The full architecture of the convolutional neural network is shown

in Table 3. The model training process uses a total of 1,370,676

parameters, equipped with Adam function as the optimization

algorithm. In this study, the loss function is the cross-entropy as

given in Equation 1.

Loss = − ∑ 𝑡𝑖
𝑛
𝑖=1 log(𝑝𝑖) (1)

where ti is the target label and pi is the softmax probability for

class i. This network architecture is chosen by heuristic approach,

meaning that the selection is purely based on intuition and trial-

and-error practices.

RESULTS AND DISCUSSION

To demonstrate the performance, a number of indicators are used

to assess the results. First, the training and validation accuracy are

measured during the model learning stage. Then the trained

network model is tested by applying a testing dataset not

previously used during the training stage. The size of testing data

is 70 images for each class. The result of model testing is

represented in the form of an evaluation matrix. Finally, an

experiment is done by demonstrating the maze solving robot in a

real maze.

Model Training

The network model training is based on the hidden layer

architecture as explained in Table 3. The training stage was

carried out on a laptop with Intel i-7 processor, GPU RTX 3050,

and 16 GB RAM. The training process run iteratively, with 30

epochs being the upper bound of the training period. The value of

the accuracy of the training results and the validation of each

epoch is directly proportional to the quality of the model.

Meanwhile, the loss indicates how well the model fits the training

data or new data. In this study, we take advantage of the early

stopping feature in keras.callbacks with a patience value of 6.

This aims to take the best value and terminate the training process

if the training result does not improve after the next 6 steps. This

is also effective to avoid network overfitting [22]-[24].

Table 4. Model Training Process

Epoch
Accuracy Loss

Train. Val. Train. Val

1 0.3058 0.5384 1.7311 1.1263

2 0.5078 0.5253 1.2420 1.0416

3 0.5814 0.6599 1.0440 0.9691

4 0.6243 0.7994 0.9452 0.7203

5 0.6683 0.9119 0.8470 0.5213

6 0.7061 0.9087 0.7715 0.5029

7 0.7345 0.9174 0.7046 0.3578

8 0.7522 0.8128 0.6608 0.5025

9 0.7742 0.8788 0.6139 0.3414

10 0.7878 0.9276 0.5777 0.2810

11 0.8035 0.8407 0.5367 0.4696

12 0.7213 0.9061 0.4995 0.2676

13 0.8241 0.9052 0.4781 0.2504

14 0.8339 0.8273 0.4591 0.5457

15 0.8467 0.8724 0.4229 0.3141

16 0.8560 0.8799 0.3993 0.3069

17 0.8636 0.8294 0.3817 0.5430

18 0.8724 0.8029 0.3534 0.7257

19 0.8758 0.8666 0.3523 0.3760

Table 4 implies that the best model training is at epoch 13

(shaded), with a training accuracy of 82.41% and validation

accuracy of 90.52%. This model is the best model because the

validation loss is the parameter required for the early stopping

feature by keras.callbacks. If the validation loss does not improve

for the next 6 epochs, then the training process terminates. As we

can see in Table 4, the validation loss of epoch 14 – 19 still greater

than that of epoch 13. As a result, the training process stops at

epoch 19 even though the maximum epoch is 30.

Model Testing

Upon completion of the training, the trained network was then

tested with a set of data not previously used in the training stage.

This to evaluate the extent of generalization of the trained

network. The confusion matrix in Figure 5 states the quality of

the model that allows visualization of the performance of the

Convolutional Neural Network. The number of testing data for

each class is 70, giving a total of 560 testing dataset. The quality

of model is in accordance with the accuracy results in Table 4.

The result representation is composed based on the confusion

matrix variant 3 as explained in [25].

Figure 5. Confusion Matrix

In details, labels 0-7 are the representations of the classes. Label

0 represents the intersection class, with 70 correctly predicted

data. Label 1 represents the dead-end class, with 70 correctly

predicted data. Label 2 represents the finish zone, with 70

correctly predicted data. Label 3 representing the start zone class,

with 70 correctly predicted data. Label 4 represents the straight

path class, with 70 correctly predicted data. Label 5 represents the

T-junction class, with 62 correctly predicted data. The remaining

8 incorrect prediction recognize the T-junction as a dead end,

GUNAWAN DEWANTORO / JURNAL NASIONAL TEKNIK ELEKTRO - VOL. 12 NO. 2 (JULY 2023)

 https://doi.org/10.25077/jnte.v12n2.1091.2023 140

giving an accuracy of 88.57%. This misclassification is mainly

due to the similarity of the color distribution of the captured

images between the two. As shown in Figure 4(b) and (f), the

black parts have somewhat same shape and distribution on the

image. So, in case of the webcam angle being tilted, this

misclassification may occur. This Label 6 represents the left turn

class, with 70 correctly predicted data. Lastly, label 7 represents

the right turn class, with 70 correctly predicted data. Based on the

results mentioned above, this model is sufficient to solve the maze

despite being the first research employing convolutional neural

network to help solve the maze. This affirms that the

convolutional neural network is a powerful tool in image

classification tasks; therefore, contribute its popularity in robotic

applications [26].

Table 5 shows the precision, recall, and F1-score which is in

agreement with the training results in Table 4. The metrics are

formulated using Equation (2) – (4).

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2)

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3)

F1-Score = 2 ×
Precision×Recall

Precision+Recall
 (4)

where TP denotes True Positive, FP denotes False Positive, and

FN denotes False Negative. These metrics becomes a reference

for concluding the quality of the model. For example, a precision

of 1 means that a False Positive is not found for that class. In

determining the motion of the robot while solving the maze, the

False Negative value becomes critical as it indicates the robot’s

incapability to undertake the appropriate commands. As in the

condition that the robot must do a U-Turn when it encounters a

dead end, the robot may not do a U-Turn and cause failure in

solving the maze if the number of False Negative is considerably

high [27]. Throughout the classification process, the

computational time is 50 ms for each video images frame.

Table 5. Model Report

Class Precision Recall F1-Score

Intersection 1.00 1.00 1.00

Dead End 0.90 1.00 0.95

Finish Zone 1.00 1.00 1.00

Start Zone 1.00 1.00 1.00

Straight Path 1.00 1.00 1.00

T-Junction 1.00 0.89 0.94

Left Turn 1.00 1.00 1.00

Right Turn 1.00 1.00 1.00

Maze Solver Experiment

The robot, with a Jetson Nano developer kit, runs the CNN model

that is used to determine the motion of each wheel. The

experiment was done twice, where the first was conducted off the

maze, while the latter was conducted on the maze. The first test

aims to evaluate the motor motion in response to the classification

result. To do so, the robot was tested off the maze and the

classification results were given by a specific hard-coded

program with a range of recorded images, meaning that the

classes inferred by the robot was not from the instantaneous

webcam images. The robot’s response to the classification results

gives the appropriate motor motion, and the success rate is sought

using Equation (5).

Success Rate =
Succesful response

Total trials
× 100% (5)

Table 6 shows that the motor motions are in accordance with the

results of the classification carried out by the model with an

overall success rate of 100%, with 10 trials for each class. These

success rates of 100% are achieved because the CNN model is

able to classify the previously-stored images in the Jetson Nano.

For example, if the robot detects an intersection image, then the

robot responds by rotating the left motor forward and stopping

the right motor, as explained in [28].

Table 6. Motor Motion Results

Classification Result
Motor Output Success

Rate (%) Left Right

Intersection Forward Stop 100

Dead End Forward Backward 100

Finish Zone Stop Stop 100

Start Zone Forward Backward 100

Straight Path Forward Forward 100

T-Junction Forward Stop 100

Left Turn Stop Forward 100

Right Turn Forward Stop 100

However, the first testing of CNN model on robot was carried out

indirectly by using the recorded video images. So, the second test

was conducted on the maze with the real-time image capturing

from the webcam. It turns out that the robot moved wiggly along

the given trajectory and failed to accomplish the navigation tasks.

This is because the video images reading process using Python on

the Jetson Nano developer kit experienced a decrease in the frame

rate to as low as 2 frames per second, which causes the robot’s

motion does not work properly in real-time capture and cause the

robot not able to fully navigate along the maze. In light of these

limitations, a number of measures can be considered to overcome

this problem, such as:

1. Hardware selection, e.g. use a mini-computer that

supports parallel processing to execute vector operation

faster.

2. AI model selection, e.g. employ network architecture

that comprises fewer number of layers in the fully-

connecting to reduce computational load without

sacrificing generalization.

3. Parameter optimization, e.g. choose the proper frame

rate that works well with the given development kit.

CONCLUSIONS

Convolutional neural network works properly for a maze solving

robot to classify a variety of obstacles. The architecture of the

convolutional neural network plays a critical role in obtaining a

satisfactory accuracy. In this study, the selected architecture

consists of four convolution layers, three pooling layers, and three

fully-connected layers. The results show that accuracy reaches

82.41% for training and 90.52% for validation. Meanwhile, the

GUNAWAN DEWANTORO / JURNAL NASIONAL TEKNIK ELEKTRO - VOL. 12 NO. 2 (JULY 2023)

https://doi.org/10.25077/jnte.v12n2.1091.2023 141

testing accuracy shows that all classes are correctly predicted,

except for T-junction with accuracy of 88.57%. If tested using

recorded images, the robot’s motors can move in accordance with

the results of the classification carried out by the model with an

overall success rate of 100%. However, in the real-time maze

solving experiment, the video images reading process is

deteriorated due to the frame rate decline which leads to some

delays in the real-time image capture. Instead of Nano, a

minicomputer can be further explored for this application to

overcome the hardware limitations.

ACKNOWLEDGMENT

The authors would like to thank Satya Wacana Christian

University for supporting this research under research grant No.

189/Pen./Rek./6/V/2021.

REFERENCES

[1] M. Jogin, Mohana, M. S. Madhulika, G. D. Divya, R. K.

Meghana and S. Apoorva, "Feature Extraction Using

Convolution Neural Networks (CNN) and Deep Learning,"

in 2018 3rd IEEE International Conference on Recent

Trends in Electronics, Information & Communication

Technology (RTEICT), Bangalore, 2018, pp. 2319-2323,

doi: 10.1109/RTEICT42901.2018.9012507.

[2] H. C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J.

Yao, D. Mollura, and R. M. Summers, “Deep Convolutional

Neural Networks for Computer-Aided Detection: CNN

Architectures, Dataset Characteristics and Transfer

Learning,” IEEE Transactions On Medical Imaging, vol. 35,

No.5, pp. 1-15, May 2016.

[3] Z. Wang, H. Li, X. Zhang, “Construction Waste Recycling

Robot For Nails And Screws: Computer Vision Technology

And Neural Network Approach”, Automation in

Construction, vol. 97, pp. 220-228, Hongkong, 2019, ISSN

0926-5805, https://doi.org/10.1016/j.autcon.2018.11.009.

[4] D. A. Alghmgham, G. Latif, J. Alghazo, and L. Alzubaidi,

“Autonomous Traffic Sign (ATSR) Detection and

Recognition Using Deep CNN,” in Procedia Computer

Science, vol. 163, pp. 266-274, 2019. ISSN 1877-0509,

https://doi.org/10.1016/j.procs.2019.12.108.

[5] B. Ko, H. J. Choi, C. Hong, J. H. Kim, O. C. Kwon, and C.

D. Yoo, "Neural Network-Based Autonomous Navigation

For A Homecare Mobile Robot,” in IEEE International

Conference on Big Data and Smart Computing (BigComp),

pp. 403–406, Jeju, 2017, doi:

10.1109/BIGCOMP.2017.7881744.

[6] Kocić, Jelena, N. Jovičić, and V. Drndarević. "An End-To-

End Deep Neural Network for Autonomous Driving

Designed for Embedded Automotive Platforms." Sensors,

vol. 19, no. 9, 2019.

[7] D. L. Z. Astuti and Samsuryadi “Kajian Pengenalan Ekspresi

Wajah Menggunakan Metode PCA Dan CNN,” in Prosiding

Annual Research, vol. 4, no. 1, pp. 293-297, 2018.

[8] A. Chavda, J. Dsouza, S. Badgujar and A. Damani, "Multi-

Stage CNN Architecture for Face Mask Detection," in 6th

International Conference for Convergence in Technology

(I2CT), Maharashtra, pp. 1-8, 2021. doi:

10.1109/I2CT51068.2021.9418207.

[9] A. Ulhaq, J. Born, A. Khan, D. P. S. Gomes, S. Chakraborty

and M. Paul, "COVID-19 Control by Computer Vision

Approaches: A Survey," IEEE Access, vol. 8, pp. 179437-

179456, 2020, doi: 10.1109/ACCESS.2020.3027685.

[10] Almabdy, Soad, and Lamiaa Elrefaei. "Deep Convolutional

Neural Network-Based Approaches for Face Recognition,"

Applied Sciences, vol. 9, no. 20, pp. 1-21, 2019.

[11] Permana, D. Ajie. “Pendeteksi Wajah Bermasker

Menggunakan Metode Faster R-CNN,” Dissertation

Universitas Komputer Indonesia, 2021.

[12] Li, Yang, et al. "Face Recognition Based on Recurrent

Regression Neural Network." Neurocomputing, vol. 297,

pp. 50-58, 2018.

[13] A. Zarkasi, H. Ubaya, C. D. Amanda, and R. Firsandaya,

“Implementation of RAM Based Neural Networks On Maze

Mapping Algorithms for Wall Follower Robot,” Journal of

Physics: Conference Series, vol. 1196, no. 1, pp. 1-6, 2019,

doi: 10.1088/1742-6596/1196/1/012043.

[14] A. Rodriguez-Tirado, D. Magallan-Ramirez, J. D. Martinez-

Aguilar, C. Francisco Moreno-Garcia, D. Balderas and E.

Lopez-Caudana, "A Pipeline Framework for Robot Maze

Navigation Using Computer Vision, Path Planning and

Communication Protocols," 2020 13th International

Conference on Developments in eSystems Engineering

(DeSE), pp. 152-157, 2020. doi:

10.1109/DeSE51703.2020.9450731.

[15] Rostami, S. M. Hosseini, et al. "Obstacle Avoidance of

Mobile Robots Using Modified Artificial Potential Field

Algorithm," EURASIP Journal on Wireless

Communications and Networking, vol. 70, pp. 1-19, 2019.

[16] O. Khatib, "Real-Time Obstacle Avoidance for

Manipulators and Mobile Robots," Proceedings. 1985 IEEE

International Conference on Robotics and Automation, pp.

500-505, 1985, doi: 10.1109/ROBOT.1985.1087247.

[17] S. Suryanarayana, V. Akhila, “Autonomous Maze Solving

Robot Using Arduino”, International Journal of Advanced

Research in Engineering and Technology (IJARET), vol. 12,

no. 3, pp. 595-603, 2021, doi:

10.3421/IJARET.12.3.2021.054

[18] A. Sabril and N. M. Abdal, “Perbandingan Waktu Tempuh

Mobile Robot Dalam Arena Labirin Dengan Algoritma

Tangan Kiri Dan Algoritma Tangan Kanan,” Jurnal Media

Elektrik, vol. 17, no. 3, 2020. p-ISSN: 1907-1728, e-ISSN:

2721-9100.

[19] A. A. Süzen, B. Duman, and B. Şen, “Benchmark Analysis

of Jetson TX2, Jetson Nano and Raspberry PI using Deep-

CNN”, International Congress on Human-Computer

Interaction, Optimization and Robotic Applications

(HORA), Ankara, 2020, doi:

10.1109/HORA49412.2020.9152915

[20] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-

Based Learning Applied to Document Recognition," in

Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324,

Nov. 1998, doi: 10.1109/5.726791.

[21] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S.

Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al.,

“Imagenet Large Scale Visual Recognition Challenge,”

International Journal of Computer Vision, vol. 115, no. 3,

pp. 211–252, 2015.

GUNAWAN DEWANTORO / JURNAL NASIONAL TEKNIK ELEKTRO - VOL. 12 NO. 2 (JULY 2023)

 https://doi.org/10.25077/jnte.v12n2.1091.2023 142

[22] S. Salman and X. Liu, “Overfitting Mechanism and

Avoidance In Deep Neural Networks,” arXiv preprint 2019,

arXiv: 1901.06566.

[23] Q. Xu, M. Zhang, Z. Gu, “Overfitting Remedy by

Sparsifying Regularization on Fully-Connected Layers of

CNNs,” Neurocomputing, vol. 328, pp. 69-74, 2019, doi:

https://doi.org/10.1016/j.neucom.2018.03.080.

[24] X. Ying, “An Overview of Overfitting and its Solutions,”

Journal of Physics: Conference Series, vol. 1168, no. 2,

2022.

[25] Z. Guoping, “On the confusion matrix in credit scoring and

its analytical properties,” Communications in Statistics -

Theory and Methods, vol 49, no. 9, 2020.

https://doi.org/10.1080/03610926.2019.1568485

[26] R. Wassem and W. Zenghui, “Deep Convolutional Neural

Networks for Image Classification: A Comprehensive

Review,” Neural Computation, vol. 29, no. 9, 2017.

[27] S. Ahmad, S. U. Ansari, U. Haider, K. Javed, J. U. Rahman,

and S. Anwar, “Confusion matrix-based modularity

induction into pretrained CNN,” Multimedia Tools and

Applications, vol. 81, pp. 23311 – 23337, 2022.

https://doi.org/10.1007/s11042-022-12331-2

[28] S. Konduri, E. O. C. Torres, P. R. Pagilla, “Dynamics and

Control of a Differential Drive Robot With Wheel Slip:

Application to Coordination of Multiple Robots,” Journal of

Dynamic Systems, Measurement, and Control, vol. 139, no.

1, 2017.

