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The global increase in greenhouse gas emissions from automobiles has brought about the 

manufacture and usage of large quantities of electric vehicles (EVs). However, to ensure proper 

integration of EVs into the grid, there is a need to forecast the charging demand of EVs 

accurately. This paper presents a short-term electric vehicle charging demand forecast using a 

feedforward artificial neural network optimized with a modified local leader phase spider 

monkey optimization (MLLP-SMO) algorithm, a proposed variant of spider monkey 

optimization. A proportionate fitness selection is employed to improve the update process of 

the local leader phase of the spider monkey optimization. The proposed algorithm trains a 

feedforward neural network to forecast electric vehicle charging demand. The effectiveness of 

the proposed forecasting model was tested and validated with electric vehicle public charging 

data from the United Kingdom Power Networks Low Carbon London Project. The model's 

performance was compared to a feedforward neural network trained with particle swarm 

optimization, genetic algorithm, classical spider monkey optimization, and two conventional 

forecasting models, multi-linear regression and Monte Carlo simulation. The performance of 

the proposed forecasting model was assessed using the mean absolute percentage error of 

forecast and forecasting accuracy. The model produced a forecast accuracy and mean absolute 

percentage error of 99.88% and 3.384%, respectively. The results show that MLLP-SMO as a 

trainer predicted better than the other forecasting models and met industry standard forecast 

accuracy. 
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INTRODUCTION 

Greenhouse gas emissions into the atmosphere have recently 

become a significant global concern. Emissions from automobiles 

have been identified to constitute a considerable amount of total 

greenhouse emissions into the atmosphere. It accounts for almost 

a quarter with an exact value of 23% of global energy-related 

emissions [1]. In the United States (U.S.), greenhouse gas (GHG) 

emissions from automobiles account for about 29% of the total 

U.S. greenhouse gas emissions, making it the most significant 

contributor to U.S. GHG emissions [2]. Again, in Ghana, 

automobile emissions account for about 5% of GHG emissions 

[3].  To address this issue, there has been a shift in recent times 

towards the production and usage of electric vehicles, electric 

trains, etc., due to their zero or minimal emissions of greenhouse 

gases.  

 

The usage of electric vehicles (EVs) has grown significantly over 

the years due to the implementation of policies and the provision 

of incentives by governments worldwide. The market share of 

EVs is expected to reach 10.8 million units by 2026 [4]. This will 

increase the demand on the grid significantly and present other 

power quality issues, such as voltage imbalance, harmonic 

injections, voltage drops, etc., to the distribution [5], [6]. In order 

to accommodate the increase in demand from EV charging on the 

grid and ensure the effective operation of the power system in 

terms of cost and quality of power supply, there is a need to 

forecast EV charging demand. Demand forecasting is critical to 

reliable and secure power system operations since it helps to 

match generation to load. Forecasting of electricity demand is 

done for short-term, mid-term, and long-term periods. Short-term 

demand forecasting predicts demand for an hour to a week. It is 

needed for unit commitment and optimization roles for the grid. 

Its accuracy helps to maintain the system stability and 

minimization of energy loss [7].  

 

Electric vehicle charging demand, unlike conventional load, is 

different. It is influenced by driving and travel patterns, charging 

time, traffic flow, etc. This stochastic nature of the EV charging 

demand factor forces the use of advanced forecasting techniques 

that can decipher major patterns in the usage behaviour of EV 

users with high accuracy to forecast EV charging demand. 

Demand forecasting accuracy is needed to ensure full utilization 

of network capability, reduce cost, and ensure system robustness. 

http://jnte.ft.unand.ac.id/
http://jnte.ft.unand.ac.id/
http://creativecommons.org/licenses/by-nc-sa/4.0/
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Conventionally, EV demand has been forecasted using moving 

average (MA), exponential smoothing (ES), linear regression 

(LR), logistic regression, autoregressive integrated moving 

average (ARIMA), and Monte Carlo simulations. These methods 

produce inaccurate forecasts due to their inability to capture the 

highly stochastic EV user behaviour and forecast charging 

demand. Furthermore, most of these methods are linear and 

cannot incorporate multivariate EV user behaviour to forecast EV 

charging demand.  

 

Machine learning methods such as artificial neural networks, 

ensemble learning methods, support vector machines, and 

clustering methods are currently employed to forecast EV 

charging demand. However, these methods are also prone to 

forecasting errors due to overfitting neural networks, aggregated 

error in ensemble learning, and difficulty handling higher 

dimensional non-numerical attributes in clustering algorithms. It 

is, therefore, necessary to employ more accurate and optimized 

models and tools to forecast EV demand and user behaviour to 

reduce the costs associated with forecasting errors. 

 

Several methods have been proposed to forecast EV demand in 

the literature. The authors in [8] employed hierarchical clustering 

and linear regression methods to forecast the EV demand for 

charging stations in different districts. The method in [9] 

forecasted the day-ahead household EV demand using two-layer 

hybrid stacking ensemble learning, combining different machine 

learning algorithms. [10] proposed a mathematical framework of 

an equivalent time-variant storage model for EV demand 

aggregation without assuming expected future driving patterns 

and exact departure and arrival times for forecasting EV demand 

using a simple ARIMA model. A short-term linear prediction 

technique is proposed in  [7] to forecast EV demand for light and 

heavy-duty electric vehicles to improve the efficiency of the EVs 

in terms of energy usage. The method in [11] explored the 

efficiency of machine learning techniques such as artificial neural 

networks (ANN) and support vector machines to forecast EV 

future demand. The authors in [12] proposed an artificial 

intelligence-based forecast using neural networks to forecast the 

daily load profile of individual loads and a fleet of randomly 

plugged-in PEVs in addition to upstream transformer loading. 

The studies above failed to utilize optimized machine learning 

models to forecast EV aggregated demand, resulting in lower 

forecasting accuracies and higher errors. Again, they failed to 

capture user behaviour from different charging locations, 

presenting another high level of EV charging demand variability 

to perform forecasts.  This study, therefore, presents a short-term 

forecast of EV charging demand considering EV user behaviour 

at different charging stations using a feedforward neural network 

optimized with the proposed modified local leader phase spider 

monkey optimization (MLLP-SMO). The subsequent sections of 

this paper provide a detailed description of the proposed 

approach, results and discussion, and conclusion.  

 

 

METHOD 

A greedy approach is applied to update a spider monkey’s (SMij) 

position during the local leader phase of the SMO algorithm. In 

this case, the monkey’s fitness SMij at a new position is only 

accepted if it is greater than the fitness in the current position. 

This approach, however, has a disadvantage in that SMij with low 

fitness located near the global solution may be overlooked and 

not given the opportunity to update. As a result, the algorithm 

may move in a non-optimal direction, missing the true solution. 

From (1), the position of a SMij is heavily influenced by β and the 

impact of a random spider (SMrj). β is a uniformly distributed 

random number within the range of (-1, 1), whereas α is a 

random number generated within the range (0, 1). 

 

𝑆𝑀𝑛𝑒𝑤𝑖𝑗 = 𝑆𝑀𝑖𝑗 + 𝛼 ×  𝐿𝐿𝑘𝑗 − 𝑆𝑀𝑖𝑗  +

 𝛽 × (𝑆𝑀𝑟𝑗 − 𝑆𝑀𝑖𝑗 )          (1)      

                   

The SMO algorithm’s local leader phase updates SMij positions 

using a greedy approach, which may not provide equal 

opportunities to all SMijs. Consequently, some SMijs with high 

fitness or those SMijs chosen by 𝛼 > 𝑝𝑟 may fail to reach the 

global optima in a given iteration. As a result, the algorithm may 

produce sub-optimal results. The perturbation rate pr is typically 

between 0.1 and 0.8. 

To improve the SMO algorithm, every SMijs chosen by prα 

for updating is given the opportunity to move to a better position 

in the local leader phase based on the fitness of their old position. 

Using fitness proportionate selection and the total number of 

SMijs in the search space (Y), the number of opportunities given 

to each SMij to update is determined. The number of opportunities 

given to each SMij for the next iteration is defined using (2).  
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Y
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Where ( ))(oldijSMfit  is the fitness of SMij in its old position, and 

N is the number of SMijs. The proposed MLLP algorithm 

improves the SMO by providing multiple chances for each SMij 

chosen by the local leader to update its current position based on 

its fitness. The number of chances for each SMij is determined by 

(2), which considers the total number of SMijs in (Y) and the 

fitness of the SMij’s previous position. If an update does not 

improve fitness after a specified number of chances, the SMij 

remains in its original position. The following is the pseudocode 

for the position update in the MLLP algorithm: 

 

1 for each member th
ij kSM  group 

2       for each  Dj ,...2,1 do 

3                if ( ) prα 1,0 then 

4               ( ) ( )ijkjijij SMLLαSMf −+= 1,0    

5               ( )ijrjij SMSMg −=     

6                     while (chances to update has not elapsed), do 

7                             ( ) ijijijchances gβfSM −+= 1,1)(  

8                            if )()( )( ijijchance SMfitSMfit   

9                                 )()( ijchanceijnew SMSM =  

10                                  break 

11                            else if (chances elapsed) 

12                                  ijijnew SMSM =)(  

13                                  break 

14                          end if 
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15                     end while             

16                end if 

17     end for 

18  end for 
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Figure 1. Implementation of the MLLP-SMO Algorithm  

To update the position of a spider monkey, SMij, using the MLLP 

algorithm, a random number 𝛼 is generated between 0 and 1. If 𝛼 

is greater than the perturbation rate (𝑝𝑟), the 𝑆𝑀𝑖𝑗 is chosen to 

update its position in the 𝐽𝑡ℎ dimension. The effect of the local 

leader’s position (𝐿𝐿𝑘𝑗) on the 𝑆𝑀𝑖𝑗 is checked using the 

parameter (𝑓𝑖𝑗). The impact of a random spider (𝑆𝑀𝑟𝑗) on 𝑆𝑀𝑖𝑗 

is also checked using 𝑔𝑖𝑗 . The 𝑆𝑀𝑖𝑗 is then given chances to 

update its position in the search space, with the number of 

chances defined by (2). Each position generated under the 

chances given (𝑆𝑀𝑐ℎ𝑎𝑛𝑐𝑒𝑠(𝑖𝑗)) is checked for fitness and 

compared to the fitness of the spider monkey’s (𝑆𝑀𝑖𝑗) old 

position. If a better position is found, the spider monkey updates 

its position to the new position, )(ijnewSM . During the position 

update of the spider monkeys in the search space using MLLP 

algorithm, the update is completed regardless of whether the 

maximum number of chances given to each spider monkey is 

reached. If a spider monkey cannot find a better position after the 

maximum number of chances, its position remains unchanged. 

The update of each spider monkey in the search space is 

influenced by the local leader’s position in the current dimension 

and the influence of a random spider in another dimension. The 

number of chances given to each spider monkey is balanced using 

(2) to maintain a stochastic nature in the local leader phase. The 

implementation of the MLLP-SMO algorithm is depicted in 

Figure 1. 

 

 

Proposed MLLP-SMO Trainer  

  
This work employs an MLLP-SMO algorithm to optimally select 

weights and biases for a feed-forward neural network to forecast 

electric vehicle demand. MLLP-SMO is a modified version of 

spider monkey optimization (SMO) with improved exploration 

and exploitation ability to avoid local optima entrapment problem 

of stochastic optimization algorithm and also with improved 

convergence. The MLLP-SMO has been benchmarked on a 

machine learning dataset and verified against algorithms such as 

genetic algorithm (GA), grey wolf optimizer (GWO), particle 

swarm optimization (PSO) and spider monkey optimization 

(SMO) to train a feed-forward multi-layer perceptron in [13], 

[14]. MLLP-SMO performed better than all these algorithms 

regarding mean square error (MSE) and classification accuracy. 

Hence it is used as a trainer for feedforward neural networks to 

forecast electric vehicle demand. 

 

Training of neural networks deals with continuously mapping 

input datasets to the output datasets to find the optimal set of 

weights and biases within a minimum number of iterations. The 

training process aims to increase classification accuracy by 

reducing classification errors. The performance of ANN is purely 

based on the synaptic weights [15]. Generally, in classification 

problems, error functions such as MSE, the sum of squared error 

(SSE), root mean square error (RMSE), etc., are used to evaluate 

the performance of the training process. In this work, the mean 

square error function is implemented. The objective of training 

multi-layer perceptron (MLP) with MLLP-SMO is to minimize 

the MSE of each training iteration defined according to (3).   

(Minimize) 
1

2

1

( )
( , )

m
n

i

j
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jA F
MSE W O

n

=

=

−
=


                  (3) 

  

where 𝑛 is the total number of training samples, 𝑚 is the output 

sample, 𝐴𝑖
𝑗
 is the actual output of the 𝑖 input data point from the 𝑗 

training sample and 𝐹𝑖
𝑗
 is the desired output of the 𝑖 input data 

point from the 𝑗 training sample. The weights (𝑤) and biases (O) 

supplied to the MLLP-SMO as variables to be optimized. Figure 

2 shows the architecture of the proposed MLLP-SMO-FNN 

Trainer. 
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Figure 2. Proposed MLLP-FNN Trainer 

From Figure 2, the MLLP-SMO algorithm supplies weights and 

biases to the MLLP and receives the errors. The MLLP-SMO 

iteratively alters the weights and biases to reach optimal values to 

perform the classification test. The output of the MLP using the 

optimal weights and bias values is used to calculate the MSE 

value. The processes involved are summarized in Figure 3. 

 

Proposed historical feature extraction algorithm for 

different charging stations 
 

Forecasting EV charging demand requires well-structured 

historical data with relevant features such as EV state of charge 

(SOC), distance travelled, charging start and end time, charging 

duration, charging power, etc. Due to variability in the charging 

behaviour of EV users in different charging regions, charging 

data from different charging stations are also different in terms of 

EV user behaviour. Forecasting EV charging demand for a period 

using historical data requires efficient extraction and combination 

of historical charging demand data from different charging 

stations. Figure 4 shows the proposed algorithm for extracting 

and aggregating EV charging data from different charging 

stations for forecasting.   

 

In Figure 4, the parameters D, N, and M represent the number of 

days in the year, the total number of charging stations and the 

total number of electric vehicles arriving at the public charging 

station. The aggregated demand for an hour and a day are 

determined with (4) and (5).  
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1 1
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u

e
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v v

r i

eP hour P i
= =

=                                 (4) 

24

1 1

( ) ( )
D
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r

e

ou

eP daily P hour
= =

=                         (5) 

where 𝑖 represents electric vehicles arriving at a charging station 

in a day, 𝑀 is the total number of EVs arriving at each hour, and 

𝑃𝑒𝑣 is the charged power of the ith EV. 

 

The initial state of charge (SOC), the time required for a full 

charge, the duration of charge, and the initial distance travelled 

before the charge are determined with (6)-(9) [12]. The algorithm 

provides an EV charging demand database of EV user behaviour 

where attributes can be extracted for forecasting. 
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Figure 3. Implementation of MLP Training with MLLP-SMO 
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where 𝐷ℎ𝑟is the hourly/daily travelled distance in km,  𝛾𝑒𝑣  is the 

driving efficiency of EV type,  𝐶𝑏𝑎𝑡 is the battery capacity of EV, 

𝑃𝑟 is the rated power of EV type, 𝛾𝑒𝑣 is EV type efficiency, 𝑇𝑒𝑛𝑑 

is charging end time, 𝑇𝑠𝑡𝑎𝑟𝑡 is charging start time, 
rD is EV model 

rated distance, and 
cP  is the charged power. 
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Figure 4. EV Demand Aggregator Algorithm 

 

Details of the processes involved in the extraction are outlined 

below. 

Step 1: Initialize the charging stations with the history of their 

charging events. 

Step 2: For each day within a year, determine the number of 

electric vehicles (EVs) arriving at each hour at all 

charging stations. 

Step 3: Select the vehicle model and its ratings for each of the 

EVs arriving at the charging station. The EV models 

used in this work are shown in Table 1. 

Step 4: For the selected EV model, determine the initial SOC and 

initial distance travelled before arrival at the charging 

station, the time required for a full charge, and the 

duration of charge. In this work, these are calculated 

using (6), (9), (7) and (8), respectively. 

Step 5: Using the results in step 4, determine the charging 

demand of EVs arriving at the charging station for an 

hour, day and month of the year. Again, hourly and daily 

demand is aggregated in this work with (4) and (5). 

Step 4: Update the historical database with the results from Step 

5. Update the EV charging demand for each hour, day, 

and month of the year. 

 

Proposed forecasting framework with MLLP-MSO  
 

The proposed short-term EV demand forecast model is outlined 

in the steps below; 

Step 1: Data mining is performed to extract knowledge from the 

EV feature extraction database. Mining processes such 

as feature extraction, data normalization and filtering are 

performed. This reveals hidden characteristics such as 

data patterns, associations, variations, etc. Features such 

as State of Charge (SOC), distance travelled, charging 

duration, day of charge, month of charge, etc., are 

extracted. 

Step 2: The extracted data is divided into training, validation and 

testing (forecasting) data. The data is afterwards 

prepared in neural network training format. 

Step 3: The training, validation and testing data are normalized. 

This helps the neural network to learn the relationships 

between the input features rather than the magnitudes of 

data points. In this work, min-max normalization in (10) 

is employed, where each data point is scaled according 

to the maximum and minimum data points in the 

datasets. In (10), min(X) and max(X) are minimum and 

maximum data points in the dataset Xi with 𝑥(𝑖) being 

the datapoint to be normalized. 

 

( ) ( )

( ) ( )
'

min

max min

x i X
x

X X

−
=

−
                    (10) 

 

Step 4: Training and validation data are supplied to the 

feedforward neural network for the training process to 

begin.  

Step 5: Parameters, i.e., population size (i.e., number of spider 

monkeys), local leader limit, global leader limit, 

maximum group, and perturbation rate of MLLP-SMO, 

are initialized.  

Step 6: The neural network is trained by MLLP-SMO by 

supplying weights and biases on training datasets to 

minimize the mean square error (MSE) between each 

training and target data. Finally, the optimized neural 

network model with optimal weights and biases is 

outputted when stopping criteria or minimum MSE is 

reached to perform a forecast for the future. 

Step 7: Testing data is supplied to the optimized model to 

perform a forecast for a preferred period. The mean 

absolute percentage error (MAPE) between the 

forecasted EV charging demand and actual demand is 

determined. 

 

In this work, the results of the forecasts are compared to three 

other algorithms as trainers; particle swarm optimization (PSO), 

genetic algorithm (GA) and original spider monkey optimization 

(SMO) in terms of mean absolute percentage error (MAPE) and 

r-correlation between the actual and forecasted demand during 

testing in (11). The industry standard for MAPE is a maximum of 

5% [16].  It is also compared to conventional forecasting methods 

such as multi-linear regression and Monte Carlo simulation.                      
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where 
iA  is the actual demand, 

iF  is the forecasted demand, and 

N is the total number of forecasts made in the period.  

 

Case study datasets 

 

The EV demand forecasting framework is tested and validated 

with public charging station data from the United Kingdom (UK) 

Power Networks Low Carbon London (LCL) Project [17]. This 

innovation project was set up to investigate the impact of a wide 

range of low-carbon technologies on London’s electricity 

distribution network. The public trial charging datasets consist of 

four (4) charging stations with charging events data. The data has 

a charging history from 2012 to 2014. The data has the following 

attributes; charging event, EV user ID, charging start time, 

charging end time, charging start date, charging end date, 

charging energy and charging price. The four charging stations 

provided 25,440 charging events from 2012 to 2014. 

 

Data pre-processing and feature extraction  

 

The feature extraction algorithm is applied to the case study data 

to build charging historical data for three years to perform the 

forecast. The initial state of charge (SOC) and distance travelled 

before arrival at the charging station, charging duration and daily 

charging demands from 2012 to 2014 are determined in addition 

to the existing features in the data. To do this, it is assumed that 

charging energies below 16.5 kWh are Chevrolet Volt EVs, 

energies above 16.5 kWh and less than 24 kWh are Nissan Leaf 

EVs and energies above 24 kWh are assumed to be Tesla Model 

S EVs.  The processed data contained 2003 user IDs with the 

following attributes; the month of charging, week of the year, day 

of the month, day type (weekday or weekend), distance travelled 

before charge (km), initial State of Charge (SOC) before charge 

and charging energy. A sample generated initial SOC and initial 

distance before the charge, and Figure 5 and the aggregated 

charging demand for 2012-2014 are shown in Figure 6. 
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Figure 5. Generated Average Distance and Average Initial State 

of Charge (SOC) for January 2013 
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                    Figure 6: Aggregated EV Charging Demand 

Once the historical data was built, the attributes were selected 

using the RankSearch algorithm in the WEKA [18] machine 

learning tool. This selects the best features which give a more 

accurate forecast. The following columns in the data were 

selected by the RankSearch algorithm to forecast the day-ahead 

charging demand: Charging month, week of the month, day of the 

week, day type (weekday or weekend), previous day average 

distance travelled, previous day average initial state of charge and 

previous day charging demand. 

 

The input data is structured properly to train the MLLP-SMO 

FNN for forecasting with a meaningful relationship between 

inputs and outputs. The selected features are formatted as follows. 

Month: number of months (1-12) 

i. Week: number of weeks (1-7), starting Monday  

ii. Day: day of the month (1-D), where D is the total number 

of days in a particular month  

iii. Day type: (Weekday or weekend) 

iv. Previous day average distance travelled: Average distance 

travelled by all EVs on a previous day before the start of 

the charge. 

v. Previous day average initial state of charge (SOC): 

average SOC before charge of all EVs in a previous day. 

vi. Previous day demand: charging a particular month's 

demand for a previous day. 

vii. A day ahead demand: charging demand of the day to be 

forecasted. 

 

An input matrix is further constructed for training the forecasting 

model. The input matrix to the forecasting model for January 

2012, week one, is shown in Table 1. The data structure for the 

training, validation and testing is shown in Table 2.  The training 

and validation data contained EV data from January 2012 to 

October 2014. The inputs nodes were 7 representing a month, 

week, day, day type, previous day average distance travelled, 

previous day average initial SOC and previous day charging 

demand. The output had a single node of the day ahead charging 

demand. For comparison, 10 hidden nodes were used for each 

trainer, i.e., PSO-FNN, SMO-FNN, GA-FNN and MLLP-SMO-

FNN and ran for 10000 iterations. The forecasting models were 

simulated in MATLAB® software, and plots were done in Origin 

software. A daily forecast is then made for November 2014 to 

validate the forecasting model. The results obtained are compared 
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to Monte Carlo simulation and multi-regression conventional 

forecasting models. 

 
Table 1. Input and Output Matrix for Week one of January 2012 

 

Selected 

feature 

 

Value 

 

Month 

  

1                               …                    1 

 

Week 

 

1                               …                    1 

 

Day 

     

7                               …                    6 

 

Day type  

 

2                               …                    2 

 

Previous 

day 

average 

distance 

travelled 

 

0         Dday7            …                    Dday5 

 

Previous 

day initial 

state of 

charge  

 

0          SOCday7        …                  SOCday5 

 

Previous 

day 

demand  

 

0          Eday7            …                   Eday5  

 

Day ahead 

demand 

(output) 

 

Eday7      Eday1         …                    Eday6 

 

 

Table 2. Data Structure for Training, Validation and Testing 

Datasets Percentage 

of total 

data (%) 

Actual 

number of 

datapoints 

Rows Colu

mns 

Training 80 6083 869 7 

Validation  15 1169 167 7 

Forecasting  5 427 61 7 

 

 

 

RESULTS AND DISCUSSIONS 
 
The results of the proposed forecasting model are presented in 

this section. The MLLP feedforward neural network forecast 

result is compared to other popular optimization algorithms: 

genetic algorithm (GA), particle swarm optimization (PSO) and 

the original spider monkey optimization (SMO) and two 

conventional methods: multi-linear regression and Monte Carlo 

simulation. The comparison is done in terms of mean absolute 

percentage error (MAPE), forecasting accuracy and r-correlation 

between actual and forecasted EV charging demand. Descriptive 

statistics (average forecast, maximum, and minimum forecasts) 

for each month are also determined and compared to that of the 

actual demand to check the closeness of forested demand to actual 

demand for each optimization algorithm. It should be noted that 

the same training and testing data were supplied to each 

forecasting model. 

Forecast performance of optimization algorithms for 

November 2014 

 

Table 3 presents the results of various metaheuristic models for 

the November 2014 forecast, evaluated using three performance 

metrics: Mean Absolute Percentage Error (MAPE), Accuracy, 

and r-Correlation. 

 

Table 3:Performance for Metaheuristic Models for November 

2014 Forecast 

Forecasting model Performance metric 

MAPE 

(%) 

Accuracy 

(%) 

r-

Correlation 

(%) 

MLLP-SMO-ANN 3.384 96.66 99.88 

GA-ANN 4.3741 93.33 80.75 

PSO ANN 6.2069 93.33 71.02 

SMO-ANN 4.0145 96.66 99.52 

 

The first model listed in the table is the proposed MLLP-SMO-

ANN. It achieved a MAPE of 3.384%, indicating that, on average, 

its forecasts had an error of approximately 3.384% relative to the 

actual values. The accuracy score for the proposed method is high 

at 96.66%, indicating that it accurately predicted the outcomes in 

96.66% of cases. Moreover, the r-Correlation score of 99.88% 

indicates a strong positive correlation between predicted and 

actual values. These results demonstrate the effectiveness of the 

proposed MLLP-SMO-ANN model in forecasting the November 

2014 data. These results are similar to those obtained by works 

done in [7] and [9]. However, the MAPE, accuracy and r-

Correlation obtained by the proposed MLLP-SMO-ANN showed 

a superiority.  

 

Also, the GA-ANN model yielded a slightly higher MAPE of 

4.3741% compared to MLLP-SMO-ANN. Although its MAPE is 

slightly higher, it is still within an acceptable range for forecasting 

accuracy. The accuracy score of 93.33% indicates that the 

model's predictions were accurate in 93.33% of cases. However, 

the r-Correlation score of 80.75% indicates a weaker correlation 

between predicted and actual values than the MLLP-SMO-ANN 

model. This shows that the GA-ANN model was less successful 

in capturing the underlying patterns in the November 2014 data. 

 

Similarly, the PSO-ANN model achieved a higher MAPE of 

6.2069% than the previous two models. This higher MAPE 

indicates a larger average forecasting error. The accuracy score 

of 93.33% is the same as the GA-ANN model, suggesting a 

similar level of accuracy. However, the r-Correlation score of 

71.02% indicates a weaker correlation, indicating that the PSO-

ANN model did not capture the underlying relationships as 

effectively as the other models. 

 

Finally, the SMO-ANN model achieved a MAPE of 4.0145%, an 

accuracy of 96.66%, and an r-Correlation of 99.52%. These 

results are similar to those of the MLLP-SMO-ANN model, 

indicating that the SMO-ANN model performed well in 

forecasting the November 2014 data. 
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Descriptive statistics performance of optimization 

algorithms for November 2014 

 

Table 4 presents the descriptive statistics for the November 2014 

forecast, including the mean, maximum, and minimum forecasts 

for four different models: MLLP-SMO-ANN, GA-ANN, PSO-

ANN, and SMO-ANN. It also includes the corresponding values 

for the actual demand. 

 

Table 4: Descriptive Statistics for November 2014 

Forecasting 

model 

Mean 

forecast 

(kWh) 

Maximum 

forecast 

(kWh) 

Minimum 

forecast 

(kWh) 

MLLP-

SMO-ANN 

421.79 532.23 363.14 

GA-ANN 417.49 515.75 310.47 

PSO-ANN 402.92 483.90 381.49 

SMO-ANN 421.50 522.43 379.61 

Actual 

demand 

431.74 536.50 364.66 

 

In the November 2014 forecast, the table shows that the PSO-

ANN and GA-ANN models provided the least average forecasts 

of 402.92 kWh and 417.49 kWh, respectively. The MLLP-SMO-

ANN model had an average forecast of only 9.95 kWh less than 

the actual average demand, while the SMO-ANN model's 

forecast was 10.24 kWh less. This indicates that the MLLP-SMO-

ANN model's average forecast was closer to the actual average 

demand than the GA-ANN and PSO-ANN forecasts. Therefore, 

the MLLP-SMO-ANN model's average forecast was considered 

better regarding its proximity to the average demand. 

 

Furthermore, when considering the maximum and minimum 

forecasts, the MLLP-SMO-ANN model outperformed the other 

models. The maximum forecast of MLLP-SMO-ANN was closer 

to the actual maximum demand, as indicated by its value of 

532.23 kWh, compared to the values of other models. Similarly, 

the minimum forecast of MLLP-SMO-ANN (363.14 kWh) was 

closer to the actual minimum demand. These results support the 

notion that the MLLP-SMO-ANN model was a better forecasting 

model for the November 2014 dataset. 

 

Forecast performance of conventional methods  

 

Table 5 provides each forecasting model's Mean Absolute 

Percentage Error (MAPE) and r-Correlation values. 

 

Table 5: Performance for Conventional Models for November 

2014 Forecast 

Forecasting model Performance metric 

  MAPE (%) r-Correlation (%) 

MLLP-SMO-ANN 3.384 99.88 

Multi-linear 

Regression 

24.99 18. 02 

Monte Carlo 

Simulation  

44.04 19. 49 

 

The MLLP-SMO-ANN model achieved a remarkably low MAPE 

of 3.384%, indicating that, on average, its forecasts had an error 

of only 3.384% relative to the actual values. Additionally, the 

model attained a high r-Correlation score of 99.88%, indicating a 

strong positive correlation between the predicted and actual 

values. These results highlight the effectiveness of the MLLP-

SMO-ANN model in accurately forecasting the November 2014 

data and show the superiority of machine learning models over 

conventional forecasting models. 

 

The multi-linear regression model yielded a significantly higher 

MAPE of 24.99% and a considerably lower r-Correlation of 

18.02%. These results show that the multi-linear regression 

model had a higher average forecasting error and a weaker 

correlation with the actual values than the MLLP-SMO-ANN 

model. Consequently, the MLLP-SMO-ANN model 

outperformed the multi-linear regression model in terms of both 

accuracy and correlation. 

 

Furthermore, the Monte Carlo Simulation model exhibited an 

even higher MAPE of 44.04% and a low r-Correlation of 19.49%. 

These outcomes indicate that the Monte Carlo Simulation model 

had the largest average forecasting error and the weakest 

correlation with the actual values among the three models 

discussed. Therefore, it can be concluded that the MLLP-SMO-

ANN model significantly outperformed the Monte Carlo 

Simulation model regarding accuracy and correlation. The actual 

forecasts of the models are shown in Figure 7. 
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Figure 7: Charging Demand Forecast for November 2014 
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CONCLUSION 

This research focused on the short-term electric vehicle charging 

demand forecast, considering the global increase in greenhouse 

gas emissions and the need for accurate EV charging predictions 

for effective integration into the grid. The study introduced a 

feedforward artificial neural network trained with a modified 

local leader phase spider monkey optimization algorithm as a 

proposed variant of spider monkey optimization. The proposed 

MLLP-SMO model achieved an impressive average forecast 

accuracy of 99.88% and a low mean absolute percentage error of 

3.384%. These results indicate the superior performance of the 

MLLP-SMO model in accurately predicting EV charging 

demand, surpassing the performance of the other forecasting 

models. 

The findings demonstrate that the MLLP-SMO model 

outperformed the alternative optimization algorithms and met 

industry standards for forecast accuracy. This indicates the 

effectiveness and reliability of the proposed model for short-term 

EV charging demand forecasting. The accurate predictions 

provided by the MLLP-SMO model can contribute to the 

successful integration of EVs into the power grid, enabling 

efficient management of charging infrastructure and optimization 

of energy resources. Overall, this research contributes to the field 

of EV charging demand forecasting and highlights the importance 

of accurate predictions for the successful implementation of 

electric vehicles on a larger scale. The MLLP-SMO model stands 

out as a promising approach for accurately forecasting EV 

charging demand, paving the way for efficient and sustainable 

integration of EVs into the power grid. 
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