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This paper presents a study on using adaptive inertia weight (AIW) in particle swarm 

optimization (PSO) for solving optimization problems. An AIW function based on the 

hyperbolic tangent function was proposed, with the function parameters adaptively tuned based 

on the particle best and global best values. The performance of the proposed AIW-PSO was 

compared with standard PSO and other PSO variations using seven benchmark functions. The 

results showed that the proposed AIW-PSO outperformed the other variations in terms of 

minimum cost and mean cost while reducing the standard deviation of cost. The performance 

of the different PSO variations was also analysed by plotting the best cost against iteration, with 

the proposed AIW-PSO showing a faster convergence rate. Overall, the study demonstrates the 

effectiveness of using an adaptive inertia weight function in PSO for optimizing problems. 
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INTRODUCTION 

The particle swarm optimization (PSO) algorithm has gained 

popularity recently due to its easy implementation, fast 

convergence, and ability to converge to satisfactory solutions [1]. 

The performance of the PSO algorithm heavily depends on the 

balance between its global and local searches, which is regulated 

by its control parameters, namely the inertia weight and 

acceleration coefficients [2]. The inertia weight is a key factor in 

controlling the balance between global and local searches during 

the search process [3]. For this reason, researchers have proposed 

various PSO variants that seek to enhance the original PSO 

algorithms' performance using the inertia weight modulation 

technique. One commonly used adaptive method is the time-

varying parameter strategy, where the control parameters are 

updated over time [2]. The linearly decreasing strategy is a 

popular approach that enhances the efficiency and performance 

of PSO [4], [5], [6]. The global-local best inertia weight takes a 

function of the local best and global best of the particles in each 

iteration to prevent premature convergence to the local 

minimum. This method often results in slow convergence rates 

and reduced population diversity [7]. To address this issue, some 

researchers have explored adaptive strategies based on the 

distances of the particles to their personal best (pbest) and global 

best (gbest) positions [3],[8]. In one such method, the inertia 

weight is updated based on the distances between the particle's 

current position and its pbest and gbest positions [9]. This 

approach has improved PSO algorithms’ convergence rate and 

population diversity. Also, a PSO algorithm that uses an 

exponential-based sigmoid function to update the inertia weight 

has been proposed [10]. The sigmoid function allows for gradual 

adjustments to the inertia weight, which helps to maintain 

population diversity and avoid premature convergence. The 

sigmoid function has also been combined with a linearly 

increasing inertia weight [10],[7]. This showed improvement in 

quick convergence ability and aggressive movement narrowing 

towards the solution region. Other weight modulation 

techniques include a logarithm decreasing inertia weight 

combined with a chaos mutation operator to improve the 

convergence speed and the ability to jump out of the local 

optima [7], an exponent decreasing inertia weight combined 

with stochastic piecewise mutation to produce an improved 

PSO that overcomes premature convergence and later period 

oscillatory occurrences [7], and a random Inertia Weight, where 

the Inertia Weight is randomly generated at each iteration  [11], 

[12]. 

 

Various inertia weight modulation strategies have been 

proposed to enhance the capabilities of PSO. Each strategy has 

its strengths and weaknesses, and researchers continue to 

explore and propose new strategies to overcome the limitations 
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of existing ones. This paper proposes a new approach for 

adaptive inertia weight in PSO based on the hyperbolic tangent 

(tanh) function. The proposed approach uses an adaptive 

equation to fine-tune the tanh function's parameters, which 

depend on the particle's best solution and the global best 

solution. We evaluate our approach using several benchmark 

functions, and the results show that our proposed approach 

outperforms the standard PSO, Linearly Decreasing Inertia 

Weight, Random Inertia Weight (RIW), where random inertia 

weights are generated after each iteration, and Exponential 

based Sigmoid inertia weight (ESIW) in terms of minimum cost 

and mean cost.  

 

PARTICLE SWARM OPTIMIZATION 

 

The original Particle Swarm Optimization (PSO) is a 

metaheuristic optimization algorithm inspired by the social 

behaviour of bird flocking or fish schooling, where each bird or 

fish is considered a particle [13].   

 

Initialization 

The PSO algorithm starts with a randomly generated particle 

population, each representing a potential solution to the 

optimization problem. These particles move through the search 

space by updating their velocity and position according to the 

best solution found by the particle itself and its neighbouring 

particles. 

 

Position and Velocity Update process 

The algorithm consists of two main processes: the position 

update process and the velocity update process. The position 

update process determines the new position of each particle in 

the search space, while the velocity update process determines 

the new velocity of each particle, as depicted in Fig. 1. The two 

processes are updated iteratively until a stopping criterion is met 

[3], [13]. The position and velocity update processes can be 

represented by (1) and (2), respectively: 

 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖  (𝑡) +  𝑣𝑖(𝑡 + 1)                                                (1) 

 

(1) 

𝑣𝑖(𝑡 + 1) = 𝑤 𝑣𝑖  (𝑡) +  𝑐1(𝑝𝑖(𝑡) −  𝑥𝑖  (𝑡)) 

+𝑐2(𝑔(𝑡) −  𝑥𝑖  (𝑡))                                                                   (2) 

 

(2) 

Where  𝑤 ≜ inertia weight (a constant for standard PSO). 

 𝑐1, 𝑐2  ≜ acceleration coefficients (which is a chosen constant for 

standard PSO), 𝑥𝑖  (𝑡) represents the current position of a particle 

and 𝑥𝑖(𝑡 + 1) represents the updated position of a particle. 

𝑝𝑖(𝑡) represents the personal best of a particle, g(t) represents the 

personal best of a particle. 𝑣𝑖(𝑡) represents the velocity of a 

particle and 𝑣𝑖(𝑡 + 1) the updated velocity of the updated particle 

with the position 𝑥𝑖(𝑡 + 1). 

 

 
Figure 1. Particle swarm optimization vector diagram 

 

The PSO algorithm iteratively updates the position and velocity 

of each particle in the swarm until a stopping criterion is met, such 

as reaching a maximum number of iterations or a desired level of 

fitness [14]. The algorithm searches for the optimal solution by 

exploring the search space and exploiting the best solutions. To 

facilitate the search process, the algorithm employs two 

constants, namely the cognitive and social constants, which allow 

each particle to consider its individual information and the impact 

of the group of particles, respectively [15]. The cognitive 

component (c1) enables each particle to return to its previous best 

position for effective local search, while the social component 

(c2) encourages the particle to move towards the overall best 

position of the swarm based on its proximity. These coefficients 

are also referred to as acceleration coefficients. In addition to the 

cognitive and social constants, PSO employs an inertia weight to 

control the balance between exploration and exploitation during 

the search process. The value of the inertia weight, w, affects the 

magnitude of the particle's velocity from one iteration to another. 

In the standard PSO, c1, c2 and w are all chosen as constants.   

The velocity of each particle is updated using (2), while the 

position is updated using (1) iteratively until an optimal solution 

is found. PSO has been applied successfully in various 

optimization problems, including engineering design, function 

optimization, and data clustering [16], [17].  

 

PROPOSED ADAPTIVE INERTIA WEIGHT PSO 

Like any optimization technique, the standard PSO has 

limitations, such as the premature convergence of the swarm to a 

suboptimal solution and the difficulty of handling high-

dimensional problems [11]. Therefore, researchers have proposed 

various modifications to the standard PSO algorithm, including 

adaptive inertia weight and acceleration coefficients, to improve 

its convergence rate and optimization performance [18], [19], 

[20]. 

 

Proposed Adaptive Inertia Weight Function  

The proposed PSO is achieved by modifying the constant 

Inertia Weight, w in the standard PSO into an adaptive 

function given in (3).  

 

𝑤 = 𝑎 × tanh(𝑏)                                                                       (3) 
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 where 'a' is the tuning factor chosen as the function 

 𝑎 =  
𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙 𝑏𝑒𝑠𝑡− 𝐺𝑙𝑜𝑏𝑎𝑙𝑏𝑒𝑠𝑡

𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝑏𝑒𝑠𝑡
                                  (4) 

 

and 'b' is given by: 

 

𝑏 =
(𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛)

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑑
 (5) 

 

These mathematical equations better balance exploration and 

exploitation processes in Particle Swarm Optimization by 

dynamically adjusting the Inertia Weight. The value of 'a' 

ensures the control of population diversity by adaptive 

adjustment of Inertia Weight, while the value of 'b' allows for a 

smooth transition from a large Inertia Weight that facilitates 

global search to a small Inertia Weight that facilitates local 

search. The variable is chosen to be inversely proportional to 

the number of iterations as convergence gets closer as more 

iterations are performed, and hence there will be the need to 

reduce the inertia weight. This is the idea based on which 

Linearly Decreasing Inertia Weight Operates. The advantage of 

the proposed model in this paper is that using the calculated ‘b’ 

as input to the hyperbolic tanh sets boundaries. The constant ‘a’ 

also constantly adjusts the boundaries of the tanh output as the 

difference between the global best and the personal best 

changes. Figure 2 shows that adjusting the constant ’a’ value 

adjusts the output boundary limits. 

 

  

Figure 2. Effects of adjusting the variable ‘a’ on the proposed 

function 

 

Figure 2 again shows that if this proposed model is applied, 

inertia weight will change smoothly as more iterations occur to 

encourage exploitation. 

 

 

 

 

Figure 3. Effects of ‘b’ on our proposed function 

 

 

To explain the advantages of the tanh-based adaptive inertia PSO 

over the other types of inertia weights, we need to analyse the 

plotted graphs and their characteristics. 

 

First, let's consider the exponential-based sigmoid inertia weight 

function, which is given by  

 

𝑦 =  
1

1 + 𝑒−𝑥 

 

    

(6) 

 

This function starts at 0 and gradually increases, reaching a 

maximum value of 1 when x is infinity. This means the inertia 

weight decreases rapidly at the beginning and slowly reaches a 

maximum value. However, this function does not have a clear 

plateau, which can lead to premature convergence and lack of 

exploitation. This is depicted in Figure 4. 

 

 

Figure 4. Exponential sigmoid function plotted alongside a tanh-

based function 

 

On the other hand, considering a linearly decreasing inertia 

weight function,  

𝑦 = 𝑚𝑥                                                                                        (7)                                         
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This has a constant slope, and the function linearly decreases with 

time, which can lead to a lack of exploration at the beginning of 

the search process. This function does not have a plateau; even 

though it can converge quickly, it may not reach the optimal 

solution. 

 

Strengths of the Proposed Adaptive Inertia Weight 

Function 

 

The proposed tanh-based inertia weight function has several 

advantages over the other two. First, this function has a clear 

plateau at the beginning of the search process, which allows for 

exploration and prevents premature convergence. Second, this 

function increases gradually and reaches a maximum value, 

allowing exploitation and convergence to the optimal solution. 

Third, this function has an adjustable slope, which ensures a 

gradual transition between exploration and exploitation. These 

characteristics balance exploration and exploitation, leading to 

better search performance and convergence to the optimal 

solution in adaptive inertia particle swarm optimization. 

 

 

Figure 5. Derivative curves of tanh and sigmoid functions 

 

The derivative curves of the tanh and sigmoid functions illustrate 

that the tanh function has a steeper slope when input values 

approach zero compared to the sigmoid function. This means that 

the value of the tanh-based function changes more rapidly as its 

input approaches zero, which is an important property for an 

adaptive inertia weight equation. 

 

In a PSO algorithm, the adaptive inertia weight is used to balance 

exploration and exploitation during the search process, and its 

value is updated at each iteration based on the fitness 

improvement achieved by the particles. The proposed equation 

for updating the inertia weight includes a tanh function that inputs 

the difference between the global and particle best. As the input 

to the tanh function approaches zero, the steep slope of the tanh 

derivative curve ensures that the value of the inertia weight 

converges more rapidly towards its upper or lower boundaries, 

which are also adjusted adaptively based on the difference 

between global best and personal best, depending on whether the 

fitness improvement is positive or negative, respectively. This 

enables the particles to quickly adapt their behaviour towards the 

direction of improvement and explore more efficiently without 

getting stuck in local optima. 

 

In contrast, if the exponential sigmoid function were used in the 

inertia weight equation, its softer slope near zero would result in 

slower convergence of the inertia weight, leading to slower 

adaptation of particle behaviour and potentially longer search 

times. Therefore, the proposed tanh-based function will be a 

better choice for the inertia weight equation in PSO, as it enables 

faster convergence and more efficient exploration of the search 

space. Therefore, based on their derivatives and their ability to 

encourage exploration, the tanh function is a better choice for 

adaptive inertia weight application in particle swarm optimization 

than the sigmoid function. 

 

Also, if the input values are small, the tanh function can be 

approximated using a Taylor series expansion, which reduces the 

computational resources required to evaluate the function. 

Lastly, the computation resource requirement is significantly 

reduced when using the Taylor series expansion to approximate 

the tanh function for small input values. The Taylor series 

expansion of the tanh function is shown in (5). 

 

tanh(𝑥) = 𝑥 −  
1

3
𝑥3 +

2

15
𝑥5 − 

17

315
𝑥7 + ⋯                            (5) 

 

From (5), as x gets smaller, higher terms can be ignored. When 

this is used, the increased computational resources involved in 

computing exponentials, as in the sigmoid function, can be 

reduced.  

TESTING 

This section describes the series of computational experiments 

conducted to assess the effectiveness of the proposed tanh-based 

adaptive inertia particle swarm optimization (TIW-PSO). To 

evaluate the performance of the TIW-PSO, we applied it to 7 

standard benchmark optimization functions using MATLAB 

programming software. The performance of the TIW-PSO was 

then compared to that of the standard PSO and other proposed 

adaptive inertia weight particle swarm optimization algorithms 

found in the literature to determine its efficacy. 

 

Benchmark Optimization Functions 

 

Details of the benchmark functions are listed in Table 1.  

 

Table 1: Benchmark functions 

Function 

Name 

 Search Range Dimension Optimum 

Value 

Sum Square [-10,10] 50 0 

Sphere [-100, 100] 10 0 

Colville [-10,10] 4 0 

Matyas [-10, 10] 2 0 

Rosenbrock [-5, 10] 50 0 

Greiwank [-600, 600] 2 0 

Rotated Hyper-

Ellipsoid 

[-65.536,65.536] 2 0 
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The proposed Tanh-based Inertia weight (TIW) is tested on 

seven (7) benchmark optimization functions. These functions 

are commonly used optimization test functions for testing the 

effectiveness of optimization algorithms. The test function used 

in the experiment are given in Table 1. The proposed method is 

benchmarked against some of the most efficient weight 

definitions in the current literature (random inertia weight 

(RIW), Linearly Decreasing Inertia Weight (LDIW) and 

Exponential Based Sigmoid Function (ESIW)).  

 

RESULTS AND DISCUSSION 

Results for Benchmark Functions 

In the conducted experiments, a comparative analysis was 

performed on the performance of different Particle Swarm 

Optimization (PSO) variations across multiple benchmark 

functions detailed in Table 1. The metrics considered for 

evaluation were the minimum cost, mean cost, mean time, and 

standard deviation of cost. The comparison Test Results of the 

Benchmark Functions are presented in Table 2. The 

convergence curves are also presented in Figures 6 – 11. Among 

the tested PSO variations, the proposed TIW (Tanh-based 

Adaptive Inertia Weight) consistently outperformed the others 

regarding minimum cost. This indicates that the proposed TIW 

algorithm was successful in finding better solutions compared 

to the standard PSO, LDIW (linearly decreasing inertia weight), 

RIW (random inertia weight), and ESIW (exponentially 

decreasing inertia weight) variations. The lower minimum cost 

obtained by the proposed TIW demonstrates its effectiveness in 

optimizing the objective function. However, it is worth noting 

that the standard PSO exhibited the lowest mean time, as 

expected. This is because the standard PSO does not involve any 

additional computations associated with an adaptive inertia 

weight, as it employs constant inertia throughout the optimization 

process. Therefore, it had a time advantage over the other 

variations. 

 

For the specific case of the sum square benchmark function, the 

proposed TIW was the second-best performing variation, with the 

LDIW achieving the lowest minimum cost. This suggests that the 

linearly decreasing inertia weight was particularly effective for 

this function, surpassing the proposed TIW in finding optimal 

solutions. Overall, the results indicate that the proposed TIW has 

the potential to improve optimization performance in most cases, 

yielding lower minimum costs. However, other variations, such 

as LDIW, might perform better depending on the specific 

benchmark function. The selection of the most appropriate PSO 

variation may vary depending on the optimisation problem's 

characteristics. 

Convergence Rates  

From the convergence curves in Figures 6 -10, the proposed TIW 

generally outperformed the other variations in terms of 

convergence, except for the sum square function, which was 

second to the LDIW. Across most benchmark functions, the 

convergence curves of the proposed TIW showed significant 

improvements over iterations, indicating a rapid convergence 

towards the optimal solution. The proposed TIW exhibited faster 

convergence compared to the Standard PSO, RIW (random 

inertia weight), and ESIW (exponentially decreasing inertia 

weight) variations. It consistently achieved lower costs in shorter 

iterations, demonstrating its effectiveness in finding optimal 

solutions. 

 

It is important to note that the performance of each PSO variation 

can be influenced by the characteristics of the optimised 

benchmark function. While the proposed TIW generally showed 

superior convergence behaviour, choosing the most suitable PSO 

variation may depend on the specific optimization problem. 

Analysing the convergence curves alongside other performance 

metrics provides a comprehensive understanding of the 

effectiveness and efficiency of each PSO variation.  

 

 
 

 
Figure 6. Convergence rate of the Rosenbrock function 

 

 
Figure 7. Convergence rate of the Grienwank function. 
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Figure 8a. Convergence rate of the Sphere function. 

 

 

 
 

  
Figure 8b. Convergence rate of the Sphere function. 

 
Figure 9. Convergence rate of the Rotated Hyper Ellipsoid  

 

Figure 10. Convergence Rate of the Sum Squares Benchmark 

Function 

 

  

Figure 11. Convergence Rate of the Matyas Benchmark 

Function 

 

CONCLUSION 

In conclusion, the study presented a novel approach for 

implementing adaptive inertia weight (AIW) in particle swarm 

optimization (PSO) by proposing an AIW function based on the 

hyperbolic tangent function. The proposed Tanh-based AIW-

PSO outperformed standard PSO and other PSO variations on 

multiple benchmark functions in terms of minimum cost, mean 

cost, and standard deviation of cost. Furthermore, the proposed 

AIW-PSO demonstrated a faster convergence rate, as seen in the 

plots of best cost against iteration. These results demonstrate the 

effectiveness of using an adaptive inertia weight function in PSO 

for optimizing problems and suggest that using a hyperbolic 

tangent function for the AIW can lead to improved performance 

over linear or exponential sigmoid-based functions.
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Table 2: Minimum Cost, Mean Time, Mean Cost and Standard Deviation of Cost 

100 Iterations, Search Population = 100  

Function PSO variation used Minimum Cost Mean Time (s) Mean Cost  Standard Deviation  

Sum Squares 

 

Standard PSO 22457.3914 0.35302 22457.3914 3.6471e-12 

LDIW 1.1436e-11 0.43326 2.6706e-10 1.2998e-10 

RIW 0.0016951 0.36337 0.0062843 0.0027468 

ESIW 0.025385 0.38421 0.046912 0.013776 

Proposed TIW 1.1087e-08 0.44208 1.4375e-08 3.1999e-09 

Sphere Standard PSO 3.4008 0.074412 3.4008 4.4633e-16 

LDIW 1.0763e-96 0.10878 5.6467e-89 5.2826e-89 

RIW 4.3514e-82 0.083148 8.9787e-75 2.5887e-74 

ESIW 1.4959e-54 0.11286 6.4887e-51 1.168e-50 

Proposed TIW 0 0.10405 1.1762e-302 0 

Colville Standard PSO 37.9895 0.158801 37.9895 1.4282e-14 

LDIW 0.00089039 0.24183 0.0010316 0.00083281 

RIW 0.00017275 0.18214 0.00018119 6.1178e-06 

ESIW 0.0011013 0.2037 0.0016746 0.00015295 

Proposed TIW 3.0931e-05 0.21368 3.531e-05 3.3358e-06 

Matyas Standard PSO 0.0014141 0.20969 0.0014141 0 

LDIW 8.232e-102 0.27651 4.4225e-97 1.7279e-96 

RIW 8.4558e-96 0.21945 7.4358e-87 2.1348e-86 

ESIW 5.9617e-74 0.2414 6.4579e-68 1.2615e-67 

Proposed TIW 9.2734e-313 0.26959 1.8097e-283 0 

Rosenbrock Standard PSO 1.9332 0.092476 1.9332 4.4633e-16 

LDIW 2.6006e-23 0.11384 1.4511e-20 2.0773e-20 

RIW 0.029562 0.086774 2.0834e-23 6.8316e-04 

ESIW 1.9287e-24 0.10707 7.5005e-24 5.0951e-05 

Proposed TIW 6.7066e-29 0.091724 1.9778e-27 2.7802e-27 

Grienwank Standard PSO 0.31656 0.026602 0.51753 3.3876e-16 

LDIW 0.036961 0.038015 0.036961 1.0225e-07 

RIW 0.029562 0.031251 0.029562 6.8316e-04 

ESIW 0.027118 0.043049 0.027174 5.0951e-05 

Proposed TIW 0.019697 0.032109 0.019697 2.0271e-17 

Rotated hyper 

ellipsoid 

 

Standard PSO 21.5454 0.10784 21.5454 3.5706e-15 

LDIW 1.939e-94 0.10111 2.6704e-87 2.8291e-87 

RIW 4.7038e-71 0.090095 1.1874e-64 2.5673e-64 

ESIW 3.4177e-52 0.10225 7.5185e-48 1.2752e-47 

Proposed TIW 0 0.10846 1.7013e-310 0 
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