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This paper presents an approach for online generator coherency identification based on 

windowed dynamic time warping (DTW). Generator rotor speed deviations measured by 

phasor measurement units (PMUs) are used as input data to compute a DTW dissimilarity 

matrix. Using the dissimilarity matrix together with Agglomerative Hierarchical 

Clustering (AHC) and Hubert-Levin index (C-index), generators are optimally grouped 

into coherent clusters. In addition to the clustering of generators, an index for 

characterizing the transmission delay of a Wide Area Measurement System (WAMS) is 

presented. A data delay factor that can indicate whether there is an inconsistent PMU data 

transmission delay is also proposed. The coherency identification technique and indices 

were tested using simulations carried out on the IEEE 39-bus system. The test results 

indicate that the proposed scheme accurately clusters generators into coherent groups. The 

suggested indices were also found to be valid.  
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INTRODUCTION 

There is a huge demand for electric power in recent times due to 

growth in population, rise in industrialization, and rapid 

modernization. Most often, the rise in demand is not accompanied 

by a commensurate expansion of generation and transmission. 

This leads to power systems being operated with reduced stability 

margins. Power systems become stressed under such 

circumstances.  

 

A stressed power system, when subjected to small signal 

disturbances like load changes and switching on or off of 

compensators, may remain stable. However, in the presence of 

large disturbances such as the tripping of transmission lines due 

to faults, such a system may lose its stability. Instability of a 

system could lead to cascading system failures, which could 

cause equipment damage, pose safety hazards to personnel, 

contribute to cascading outages, and shutdown of large areas or 

entire power systems [1].  

 

When a stressed power system is subject to large disturbances that 

could result in instability, it is necessary to perform emergency 

control to prevent cascading failures and the collapse of the entire 

network [2]. The first line of control actions is the engagement of 

conventional protection systems and controls, e.g., protective 

relays. However, when the conventional protection and control 

systems fail to keep the system within stability margins, other 

actions should be taken. One such control action is Intentional 

Controlled Islanding (ICI) [3]. ICI is the splitting of a power 

system into sustainable and stable subsystems called islands. ICI 

is often used as a last resort to prevent a blackout. The objective 

of ICI is to create islands by choosing an optimal set of lines to 

disconnect while minimizing generation-load imbalance, 

maintaining voltage stability, ensuring coherency of generators, 

and restraining out-of-step oscillations. The stability of each 

island depends on the coherency of generators inside the islands. 

Generators are said to be coherent if they have similar angular 

trajectories after a fault [3].  

 

For ICI to be effective, correct, and adaptive, online identification 

of generators’ coherency are essential. Moreover, the coherency 

between groups of generators can change over time, due to 

changing network topology and operating conditions, thus 

necessitating real-time coherency identification [4, 5]. Online 

measurement-based coherency determination is made feasible 

due to the increasing deployment of phasor measurement units 

(PMU) in wide-area measurement systems (WAMS). PMUs can 

provide synchronized measurements of voltage and current 

phasors, allowing system observation in real-time. 

 

There are several works on online identification of coherency. In 

[6], coherent generator groups were identified using discrete 

Fourier transform (DFT) analysis of internal voltage phasors of 

generators. The internal voltage phasors were estimated using 

voltage and current phasors measured by PMUs installed at the 
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generator terminals. The approach in [7] also combines generator 

speed with Fourier analysis to determine coherent generator 

groups. However, the identification of generator coherency using 

Fourier transform-based approaches assumes linearity and 

stationary nature of input data, which does not hold for inter-area 

oscillations. The works presented in [1], [8], and [9] used 

Artificial Neural Network (ANN)-based approaches to determine 

coherent generator groups. ANN-based approaches need 

extensive offline training which is daunting for large 

interconnected networks. A correlation coefficient-based method 

for identifying coherent groups of generators is also proposed in 

[10]. The method uses a threshold to identify the correct number 

of groups, which may vary for different operating conditions and 

fault locations. The threshold requires expert system knowledge 

which makes practical implementation of the approach 

challenging.  

 

The methods in [11] and [12] used bioinformatics clustering 

technique and K-means clustering technique respectively, for the 

identification of coherent groups. However, both methods require 

a pre-specification of the number of clusters, which does not 

make them adaptive. The principal component analysis (PCA) 

method proposed in [13] employ generator speed and bus voltage 

angle as input parameter . However, it requires prior information 

of system dynamic characteristics, which is difficult to obtain. A 

pattern reorganization technique called independent component 

analysis (ICA) is used for coherency identification in [14], while 

in [15], a continuous wavelet transform (CWT) is relied upon.  

 

All the works above assume that data received at control centers 

from PMUs are time-synchronized, with no data loss. However, 

there is a possibility of partial data loss or delayed data 

transmission due to loss of communication from a PMU or 

latency in a communication channel. Besides, there could be a 

loss of GPS signal to a PMU [16]. The right identification of 

coherent generator groups hinges on timely, accurate and 

synchronized reception of signals from PMUs. As such, if there 

should be loss or inconsistent delay of data from any of the PMUs, 

generators could be placed in wrong clusters or classified as 

singletons. Thus, there is a need for a scheme that rightly 

determines coherent generator groups in case of data loss or 

inconsistent delay of data. This need is yet to be addressed. 

 

This work presents a coherency identification scheme that 

addresses the identified deficiencies in existing techniques. The 

proposed technique identifies coherent clusters correctly in the 

event of partial loss of data or inconsistent delay of signals from 

PMUs. The scheme also identifies coherent clusters correctly 

when PMU signals are time-synchronized and experience 

consistent delays. It utilizes the windowed dynamic time warping 

(DTW) distance [17] as a measure of generator coherency.  The 

DTW distance is used as an input to an agglomerative hierarchical 

clustering (AHC) algorithm [18] which is used in tandem with the 

Hubert-Levin index (C-index) [19] to optimally identify coherent 

generator groups. The input parameters required are rotor speed 

deviations of the individual generators within a system. The 

contributions of this work are summarized as follows: (1) 

Development of a technique for identification of coherent 

generator clusters based on windowed DTW. (2) Proposition of 

data delay factor, which is a flag that indicates whether there is 

an inconsistent data delay or loss, and the PMU signal 

experiencing such delay. (3) Use of windowed-DTW distance as 

an index to characterize the PMU data transmission delay of a 

given wide area measurement system (WAMS). 

 

The rest of the paper is organized as follows: The wide-area 

measurement system and associated communication challenges 

are presented in Section 2. Section 3 discusses the concept of 

generator coherency. In Section 4, Euclidean distance and 

dynamic time warping distance are compared as similarity 

metrics.  The AHC algorithm as a clustering tool and the C-index 

as clustering validation index are presented in Section 5. The 

proposed coherency identification scheme is presented in Section 

6. Test results are presented and discussed in Section 7. 

Conclusions drawn are highlighted in Section 8. 

WIDE AREA MEASUREMENT SYSTEMS 

After many major blackouts in the past, many technologies have 

been developed and implemented to supervise, monitor, and 

control power systems during disturbances and sustain their 

operations. One such technology is the Wide Area Measurement 

System (WAMS). A WAMS is a system in which phasor 

measurements are collected from various locations in an electrical 

grid. The measurements are then transmitted to a central location 

where they are used for system monitoring and control [20]. 

 WAMS Components 

    The basic components of WAMS are phasor measurement 

units (PMUs), phasor data concentrators (PDCs), and 

communication networks. Figure 1 shows a block diagram of 

WAMS. The first basic component of WAMS is the PMU. It is 

used to measure voltage and current waveforms that are 

synchronized with clocking signals obtained continuously from a 

global positioning system (GPS) [21]. Some PMUs can record 

angles and speeds of synchronous generators [22]. 

Synchronized measurements offer reliable data for power 

system analysis, as signals are aligned to common time 

references, are time-stamped, accurate, and filtered from 

electrical noise [23]. 

 

 
 

Figure 1. Block diagram of WAMS 

The next basic component of WAMS is phasor data concentrators 

(PDCs). PDCs are smart devices that collect data from PMUs and 

sort them according to GPS time stamps. PMUs' phasor 

information in IEEE 1344 data format is transmitted either via 

dedicated lines between specified locations or over a switched 



GIDEON ADOM-BAMFI / JURNAL NASIONAL TEKNIK ELEKTRO - VOL. 10 NO. 2 (JULY 2021) 

 

https://doi.org/10.25077/jnte.v10n2.908.2021   123 

link to PDCs. Subsequently, PDCs send time-synchronized data 

to higher level PDCs called Super PDCs.   

 

The data at the super PDCs are then transmitted to control centers. 

At these centers, application software packages are applied to the 

data to yield various preventive and corrective actions.  

 Communication Infrastructure       

The transmission of measured field data is realized through 

telecommunication channels such as coaxial cable, fiber optic 

cable and wireless modems. The latency, jitter, and reliability of 

communication networks in WAMS are vital in ensuring that 

WAMS are suitable for supporting protection functions [21]. 

Communication networks must ensure that measurements 

supplied by WAMS are timeously and accurately received.  

 Communication Challenges 

In WAMS, data is transmitted from one logical layer to the other 

through wired or wireless communication channels. The latency 

associated with various channels brings about transmission 

delays. PMU devices are distributed over a wide area, covering 

various locations, and at varying distances from the PDCs. Thus, 

data from PMUs will have different end-to-end transmission 

times. The PDCs’ function is to synchronize data transmitted 

from the PMUs. However, in the event of significant channel 

delay, the time-out (i.e., the time a PDC has to wait for the arrival 

of the same time-stamped signals) may be exceeded. Hence, data 

from some PMUs may not be passed to control centers on time. 

This leads to the issue of incomplete data [20].  

GENERATOR COHERENCY 

Generator coherency identification is primarily a similarity 

matching problem. The goal is to cluster generators into groups 

based on the similarity of their measured signal trajectories. 

When a disturbance occurs in a power system, the generators’ 

responses are governed by their inertia and location in the system. 

Generators that exhibit similarity in their time-domain responses 

are considered as coherent and can be clustered.  

  

Following a transient disturbance, individual generators or groups 

of generators tend to oscillate. Their rotor angle swings are 

dependent on each other and they evolve together with time. This 

can be expressed as [1]: 

 

               
( ) ( ) ( ) max0 tttKtt pqqp −              (1) 

 

where p and q are pairs of generators, ( )tK pq
is a constant whose 

value may change with time. The value of ( )tK pq
will be small 

and nearly constant for a coherent pair, with the generators said 

to be perfectly coherent when ( ) 0=tK pq . A group of generators 

are said to be coherent if each pair of generators in the group is 

coherent according to the above definition. For a non-coherent 

pair, ( )tK pq
will be large and may also largely vary with time.  

Generally, in power system studies, a pair of generators are 

classified to be coherent when the value of ( )tK pq
does not 

exceed 180o, 1 second after a disturbance [24]. 

Differentiating the terms in Eq. (1) results in Eq. (2) as 

follows: 

                
( ) ( )

( )tC
dt

td

dt

td
pq

ji −


                                     (2) 

From which         

                        ( )tCωω pqji −                                     (3) 

where ( )tC pq
 is another constant whose value may also change 

with time. From (3), it can be concluded that following a 

disturbance, the difference in speed deviation of coherent 

generators, like the difference in rotor angles, will be small and 

nearly constant, while the difference in speed deviation of pairs 

or group of generators that go out of step will be large and also 

vary.  

 

Rotor speed deviations of generating units can be obtained with 

the help of some special PMUs which can record synchronous 

generators’ speeds through theoretical calculation on electrical 

measurements and key phase pulse signals [1]. Thus, algorithms 

based on rotor speed deviations can be implemented in the field.    

COMPARISON OF EUCLIDEAN DISTANCE 

AND DYNAMIC TIME WARPING DISTANC 

Several time-domain coherency identification schemes employ 

the Euclidean distance or its variants such as the Manhattan 

distance, Maximum distance, Minkowski distance and 

Mahalanobis distance. The Euclidean distance is a commonly 

used tool to measure similarity between signals. Euclidean 

distance can only be computed for vectors of equal length. For 

two trajectories or time series vectors T and S of equal length n, 

the Euclidean distance eucd between their ith samples is: 

                       ( ) ( ) −=
=

n

i
iieuc STSTd

1

2
,                            (4)          

For any two trajectories, the smaller the Euclidean distance, the 

more similar they are, and vice versa. For any generator pair, the 

smaller the Euclidean distance, the more coherent they are.  

 

The Euclidean distance and its variants consider the differences 

of the samples of two time series at corresponding time points and 

do not consider the consistency of the changes in time series. 

Consequently, the Euclidean distance as a measure of similarity 

is sensitive to signal shifts [17]. For example, if one time series in 

a pair that is coherent in nature is only slightly delayed or shifted 

from the other, but otherwise the same, the Euclidean distance 

between them will be large and thus be misinterpreted to be non-

coherent. This is illustrated in Figure 2(a). In the figure, the red 

and blue curves correspond to two signals, with the blue signal 

delayed. It can be noticed that the two signals are similar, but the 

positions of peaks and troughs are not exactly aligned due to the 

delay of the blue signal. The two time series are not considered to 

be similar under Euclidean distance, because Euclidean distance 

can only examine the difference of values of different samples at 

corresponding time points, without considering the consistency 

of sample changes in time series. As such, the use of Euclidean 

distance gives an inaccurate measure of similarity in the practical 

events of signal delay due to communication channel latency. 

On the other hand, dynamic time warping (DTW) as a measure of 

similarity, gives more robustness to similarity computation. By 

this method, time series of different lengths and speeds can be 

compared. DTW replaces the one-to-one point comparison, used 

in Euclidean distance, with a many-to-one or one-to-many 

comparison as seen in Figure 2(b). The main feature of this 
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distance measure is that it allows the recognition of similar 

trajectories, even if there is a delay or loss of samples. It does this 

by finding the optimal match between two time series. For time 

series T and S, the DTW distance dtwd  between them is given as: 

( , ) min{ ( , )}dtw wd T S d T S=                 (5) 

where ( )STddtw , is the cost of matching the two time series, 

computed by summing the local distances between samples of the 

two time series defined according to the non-linear mapping 

between the them.  

 

 

 
Figure 2. (a) Euclidean distance used as a measure of similarity, 

(b) DTW used as a measure of similarity 

AGGLOMERATIVE HIERARCHICAL 

CLUSTERING ALGORITHM AND C-INDEX 

Agglomerative Hierarchical Clustering as a Clustering 

tool 

The AHC is a type of hierarchical clustering technique used to 

group objects in a bottom-up manner. The algorithm starts by 

treating each object as a singleton cluster. Next, the singleton 

clusters are merged until a desired number of clusters that satisfy 

stated conditions are formed [18].  

 

The AHC algorithm has three main distance measures. These are: 

single linkage, complete linkage, and average linkage [18].  

Generally, the AHC algorithm with a single linkage is most stable 

and effective. Thus, the single linkage measure is used for the 

cluster analysis in this work. The AHC algorithm is also called 

the nearest neighbor cluster algorithm when the single linkage 

measure is used for the distance between clusters.   

Considering a set of N objects, and seeking to form K clusters 

using a single linkage, the basic algorithm of the AHC is 

presented using the flowchart shown as Figure 3. This is further 

outlined as follows[25]: 

Step 1: Specify the desired number of clusters, K from the range  

               N,1 . 

Step 2:  Form an initial singleton cluster, iG  for each object i. 

Step 3: Find the distances between each pair of clusters and 

construct the distance (dissimilarity) matrix, D, of size  

CC where C is the number of clusters formed. 

Step 4: Merge the clusters with the smallest dissimilarity (say, 

pG and qG into new cluster, rG  and decrease C by 1. 

 Step 5:  Check the updated number of clusters formed. If this 

number is greater than the desired number of clusters, k, 

go to Step 3; otherwise, proceed to Step 6. 

Step 6:  Output the clustering results. 

 

Start

Construct dissimilarity 

matrix

Merge clusters with lowest dissimilarity into 

a new cluster and reduce the number of 

clusters, C, by 1

Assign each object to a 

cluster

Is C > K

No

End

Set desired number of 

clusters, K

Output clustering results

Yes

 
 

Figure 3. Flowchart of the AHC algorithm 

Hubert-Levin Index (C-Index) as a Cluster Evaluation 

Index 

The Hubert-Levin index (HL or C-index) was used together with 

the AHC algorithm to find the optimal clustering results. The HL 

index is a measure of compactness. It takes into account, the 

within-cluster distances.  The index varies between 0 and 1. A 

good clustering result corresponds to low values of the index [26]. 

For a clustering result, the HL-index is given by [26]: 

      
minmax

min

SS

SS
HL w

−

−
=                                     (6) 

Where wS is the sum of the within-cluster distances; minS  is the 

sum of the smallest distances considering all pairs of clusters; and 

maxS is the sum of the greatest distances considering all pairs of 

clusters.  
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GENERATOR COHERENCY IDENTIFICATION 

BASED ON DYNAMIC TIME WARPING (DTW) 

DTW as a Scheme for Coherency Identification 

Consider two rotor speed deviation trajectories specified as 

a data matrix as follows: 

1 2

1 2

...

...

p p pm

q q qn

  

  

  


  
ω

ì üï ï
= í ý
ï ïî þ

        (7) 

Where  ∆𝜔 corresponds to the speed deviation matrix for an 

event, m and n correspond to the number of data points for 

generators p and q respectively. Normally, for time-synchronized 

PMU measurements, m and n are equal. Under such a scenario, 

Euclidean distance or its variant can be used as an accurate 

measure of coherency.  

 

However, in the event of a relative delay of a trajectory, for 

instance, by a sample period as a result of transmission channel 

latency, the following matrix results: 

 

1 2

0 1 ( 1)

...

...

p p pm

q q q n

  

   −

    
 =  

    

*
   

ω        (8) 

Where 𝛥𝜔∗ corresponds to the speed deviation matrix for 

generators p and q for a sample-period delay in the trajectory of 

generator q. 

 

In (8), it is assumed that there is a delay of PMU signals from 

generator q. The shift in the trajectory means that, even if the two 

trajectories are similar and thus coherent, the use of Euclidean 

distance or its variant would indicate otherwise, because, at any 

point in time, a current sample and a delayed sample of generators 

p and q respectively will be compared. For example, at the second 

sample point, speed deviations 𝛥𝜔𝑝2 and 𝛥𝜔𝑞1 corresponding to 

the generators p and q respectively will be compared if the 

Euclidean distance is used. Also, at the last sample points, speed 

deviations 𝛥𝜔𝑝𝑚 and 𝛥𝜔𝑞(𝑛−1)  for generators p and q 

respectively are compared. Consequently, the use of Euclidean 

distance would give an inaccurate measure. 

 

To overcome the drawbacks associated with the use of Euclidean 

distance and other point-to-point comparison metrics for 

coherency identification, DTW is proposed in this work. For the 

two rotor speed deviation trajectories for p and q, estimated over 

the same period, DTW can be used whether there is a delay or 

data loss due to PMU data transmission. 

 

To match these two trajectories using DTW, a local cost measure, 

( , )pi qjd    , is defined. The local cost refers to the vertical 

distance between data points i and j of rotor speed deviation 

trajectories 𝛥𝜔𝑝  and 𝛥𝜔𝑞 respectively. It indicates the similarity 

between the two data points, and is defined as: 

 
2

( , )pi qj pi qjd      =  −                (9) 

Where 𝑖 Є {1,2, … . . , 𝑚} and 𝑗 Є {1,2, … . . , 𝑛}.  

Typically, ( , )pi qjd     is small (low cost) if 𝛥𝜔𝑝𝑖  and 𝛥𝜔𝑞𝑗   

are similar to each other, otherwise, ( , )pi qjd     is large 

(high cost). 

 

A local cost matrix 𝑑𝑖𝑠𝑡𝑀𝑎𝑡𝑟𝑖𝑥(𝛥𝜔𝑝, 𝛥𝜔𝑞) of size m-by-n is 

constructed by calculating local cost measures of each pair of data 

points from trajectories 𝛥𝜔𝑝 and  𝛥𝜔𝑞 as follows: 

1 1 1 2 1

2 1 2 2 2

1 2

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , )

p q p q p qn

p q p q p qn

pm q pm q pm qn

d d d

d d d
distMatrix

d d d

     

     

     

      
 

      
=  
 
       

(10) 

Where 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛 and entry ( , )pi qjd    , 

corresponds to the vertical distance of ith point of 𝛥𝜔𝑝 and jth 

point of 𝛥𝜔𝑞 . 

 

To find the best match between the two trajectories, a path 

through the distMatrix called a warping or alignment path, is 

found. A warping path, W, is a contiguous set of matrix elements 

that characterizes a mapping between two trajectories by 

assigning element 𝛥𝜔𝑝𝑖  of 𝛥𝜔𝑝 to element 𝛥𝜔𝑞𝑗  of 𝛥𝜔𝑞. A 

warping path, W, is defined as: 

 
1 2{ , ,..., ..., }k KW w w w w=                  (11) 

where 𝑤𝑘 = (𝑖𝑘 , 𝑗𝑘)Є[1: 𝑚] × [1: 𝑛] represents the cell in the 𝑖𝑘th 

row and 𝑗𝑘th column of the distance matrix 

( )qp ωωdistMatrix  , .  

 

For example, in Figure 4, an optimal warping path for the red and 

blue signals is shown by the red cells. Given that 𝑤𝑘 = (𝑖𝑘 , 𝑗𝑘) 

and 𝑤𝑘−1 = (𝑖𝑘
′, 𝑗𝑘

′) with 𝑖𝑘 , 𝑖𝑘
′ ≤ 𝑚 and 𝑗𝑘 , 𝑗𝑘

′ ≤ 𝑛, a valid 

warping path is subject to the following constraints [27]: 

(1) Boundary conditions: It enforces that the first elements, 

𝑤1 = (1,1)  and the last elements 𝑤𝐾 = (𝑚, 𝑛) of 𝛥𝜔𝑝 and  

𝛥𝜔𝑞 are aligned to each other.  

(2) Continuity: This avoids omissions in elements and 

replications in the alignment of 𝛥𝜔𝑝 and 𝛥𝜔𝑞 with 𝑖𝑘 −

𝑖𝑘
′ ≤ 1 and 𝑗𝑘 − 𝑗𝑘

′ ≤ 1. 

(3) Monotonicity: This forces the points in the warping path to 

be monotonically spaced in time such that  𝑖𝑘 − 𝑖𝑘
′ ≥ 0 and 

𝑗𝑘 − 𝑗𝑘
′ ≥ 0. 

It should be noted that when the two trajectories 𝛥𝜔𝑝  and 𝛥𝜔𝑞  

are similar and time-synchronized, the warping path is the 

diagonal of the distance matrix.  

 

The total or global cost ( , )w p qd     of a warping path W 

between 𝛥𝜔𝑝 and 𝛥𝜔𝑞with respect to the local cost measure is 

defined as: 

1

( , ) ( , )
k k

K

w p q pi qj

k

d d   
=

  =               (12) 
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Figure 4. Optimal warping path for two signals 

The objective of DTW is to find the distance ( , )dtw p qd     

between two trajectories 𝛥𝜔𝑝 and 𝛥𝜔𝑞 , that gives the minimum 

total cost among all possible warping paths. Mathematically, 

( , ) min{ ( , )}dtw p q w p qd d     =          (13) 

This distance, referred to as the DTW distance, is efficiently 

computed using dynamic programming [17]. By this method, a 

cumulative distance matrix, γ, of the same dimension as the 

distance matrix, is created to store in the cell (𝑖, 𝑗) of γ, the 

following value: 

 

( , )

( , ) min{ ( 1, 1), ( 1, ), ( , 1)}    

                                                                                         

pi qj

i j

d i j i j i j i j

otherwise



     

=

   + − − − − − 



    

(14) 

 

Where 𝑑(𝛥𝜔𝑝𝑖 , 𝛥𝜔𝑞𝑗) is the local cost measure between the ith 

and jth samples of 𝛥𝜔𝑝 and  𝛥𝜔𝑞 respectively and ε is the warping 

window threshold, defined to overcome the problem of mapping 

a large number of points of  𝛥𝜔𝑝 to a single point of 𝛥𝜔𝑞 and vice 

versa. From (14), it implies the cumulative distance γ at the (i,j) 

cell will consider besides the local cost between 𝛥𝜔𝑝𝑖 and 𝛥𝜔𝑞𝑗 , 

the minimum value among adjacent cells at positions: (𝑖 − 1, 𝑗 −

1), (𝑖 − 1, 𝑗) and (𝑖, 𝑗 − 1). By this method, the last element of γ 

corresponds to the DTW distance. As a special case, when the 

warping window threshold is zero, the DTW is equal to the 

Euclidean distance.  

 

The DTW distance is also defined as the cost of matching two 

trajectories. Thus, if two trajectories are similar and time-

synchronized (with consistent delay), the DTW distance will be 

less than when there are unequal or inconsistent delays of the 

signals. In such case, the DTW distance, 𝑑𝑑𝑡𝑤(𝛥𝜔𝑝, 𝛥𝜔𝑞) is also 

equal to the Euclidean distance between the two trajectories. 

Thus, the Euclidean distance between two trajectories can be seen 

as a special case of DTW, defined as the case where the two 

trajectories are time-synchronized.  

 

Proposed Measures of Generator Coherency and Signal 

Delay  

Coherency Measure 

       In this work, the DTW distance, ( , )dtw p qd     is 

proposed as a measure of generator coherency. Two generators p 

and q are coherent if they satisfy the following equation: 

( , )dtw p qd                               (15) 

Where δ is a threshold value. For non-coherent generator pairs or 

groups, the DTW distance will exceed the threshold value. Setting 

of the threshold value is subjective and could lead to inaccurate 

results. The need to explicitly define the thresholds for various 

groups is avoided by using the AHC algorithm coupled with the 

C-index in this work.  

 

For coherency identification among a given set of generators in a 

power system, a matrix referred to as the dissimilarity matrix is 

computed. This comprises the DTW distances of each pair of 

speed deviation trajectories of the generators in the set. The 

dissimilarity matrix for a power system of N number of generators 

is given by: 

 

1 1 1 2 1

2 1 2 2 2

1 2

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , )

dtw dtw dtw N

dtw dtw dtw N

dtw N dtw N dtw N N

d d d

d d d

d d d

     

     

     

      
 

      
=  
 
       

dtw
d      (16) 

The dissimilarity matrix is then normalized to form the matrix  

𝒅𝒅𝒕𝒘
∗   whose elements are determined according to the equation: 

       
, {1,2,... }

, {1,2,... } , {1,2,... }

( , )

( , ) - min { ( , )}

max { ( , )}- min { ( , )}

*

dtw
d p q

dtw p q p q N dtw p q

p q N dtw p q p q N dtw p q

d d

d d

 

   

   



 

  =

   

   

 

(17) 

Where ( , )*

dtw
d p q    denotes the normalized value of the 

DTW distance between the speed deviation trajectories of 

generators p and q respectively. The normalized DTW 

dissimilarity matrix is further used in the coherency identification 

algorithm. 

PMU Data Delay Factor      

When there is no data loss or inconsistencies in PMU data 

transmission delays, the DTW distance between a pair of coherent 

generators is equal to the Euclidean distance ( , )euc p qd   

between their speed deviation trajectories. That is: 

 

 
2

1

( , ) ( , ) ( , )
m

dtw p q euc p q pi qi

i

d d d     
=

  =   =    (18) 

 

To determine the generator whose PMU data is missing or 

experiencing inconsistent delay with respect to the other 

generators’ signals in a power system, thereby enhancing the 

coherency identification algorithm performance, an index 

referred to as data delay factor 𝑑𝑑𝑒𝑙  is also proposed in this work. 

The data delay factor is also a measure of the data delay of a given 

PMU signal. For generators p and q, the data delay factor is given 
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by the ratio of the DTW distance, ( , )dtw p qd     and the 

Euclidean distance ( , )euc p qd    , which is given as: 

( , )
( , )

( , )

dtw p q

del p q

euc p q

d
d

d

 
 

 

 
  =

 
           (19) 

For two time-synchronized coherent generators, 𝑑𝑑𝑒𝑙  has a value 

of unity, because the DTW distance will be equal to the Euclidean 

distance. However, for coherent generators with unequal delay 

times of their PMU data, 𝑑𝑑𝑒𝑙  is less than one as the Euclidean 

distance will be greater than the DTW distance. Also, for a non-

coherent generator pair, 𝑑𝑑𝑒𝑙  is approximately unity for both 

equal and unequal delay times. This is because the Euclidean 

distance barely deviates from the DTW distance for non-coherent 

signals [28]. In addition, for perfectly coherent generators with 

time-synchronized PMU data,  ( , )euc p qd     and 

( , )dtw p qd     will be zero, giving a divide-by-zero error. 

However, this is a rare scenario, as there would not be perfectly 

coherent generators in a given time-window.  

 

A delay factor matrix 𝒅𝒅𝒆𝒍  is formed in which each cell is the 

ratio of the DTW distance and Euclidean distance for two 

generators. For a system with N generators, the data delay factor 

matrix is given as: 

 

1 1 1 2 1

2 1 2 2 2

1 2

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , )

del del del N

del del del N

del N del N del N N

d d d

d d d

d d d

     

     

     

      
 

      
=  
 
       

del
d   (20) 

 

DTW-distance-based Coherency Identification  

Algorithm 

The proposed algorithm for the identification of Coherent Groups 

(CGs) uses the dissimilarity matrix as the input parameter. After 

the evaluation of the dissimilarity matrix, the next step is to 

identify the CGs. The AHC algorithm is adopted to aid the 

identification of CGs. The AHC is used together with the C-index 

to determine the optimal clusters, and the optimal number of 

clusters 𝑘𝑜𝑝𝑡 from the clustering number search range 

[𝑘𝑚𝑖𝑛 , 𝑘𝑚𝑎𝑥]. 𝑘𝑚𝑖𝑛 is set to be greater than unity to avoid putting 

all generators into one cluster. 𝑘𝑚𝑎𝑥 is set not so high to avoid 

putting generators into singleton clusters. The search range also 

impacts the computational time of the algorithm. The wider the 

range, the higher the computational time and vice versa. The 

flowchart of the coherency identification algorithm is as shown 

as Figure 5. Its operation is outlined as follows: 

Step 1: Obtain speed deviation data from PMUs in the time 

window, t=0.05 s - 0.55 s after the clearance of a fault. 

Step 2: Set the search range [𝑘𝑚𝑖𝑛 , 𝑘𝑚𝑎𝑥] for the number of 

clusters.  

Step 3: Initially assign each generator to a unique cluster, 𝐺𝑖 =

{𝑖}(𝑖 = 1,2, … … … 𝑁).  

Step 4: For 𝑘 = 𝑘𝑚𝑖𝑛  to 𝑘𝑚𝑎𝑥 

(a)  Evaluate the DTW distance for all pairs of generators 

(p,q) of the clusters, and form the normalized 

dissimilarity matrix 𝒅𝒅𝒕𝒘
∗  of size c x c, where c is the 

number of clusters formed. 

(b) Merge the generator clusters with the smallest 

dissimilarity (suppose that they are 𝐺𝑝 𝑎𝑛𝑑 𝐺𝑞) into 

a new cluster 𝐺𝑟, and reduce the value of c by 1 (i.e., 

𝑐𝑛 = 𝑐𝑛−1 − 1) .  

(c)  Check the current number of clusters, c. If this 

number is greater than the desired number of 

clusters, k, go to (a); otherwise, proceed to (d). 

(d)   Evaluate the Hubert-Levin index (C-index) and 

store it in matrix HL. 

Step 5: Find the minimum value of the matrix HL which also 

corresponds to the optimal number of clusters. 

Step 6: Output the optimal number of clusters, the HL index, and 

clustering results (i.e., groups of generators) 

 
Figure 5. Flowchart of the coherency identification algorithm 
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TEST SYSTEM, SIMULATION RESULTS, AND 

PERFORMANCE EVALUATION 

         The scheme was validated through dynamic simulations of 

the IEEE 39-bus test system. The system, also known as the New 

England test system, is a standard system widely used for 

transient stability studies, including coherency detection [1]. It is 

shown as Figure 6. It consists of 10 generators and 39 buses. 

Generator 1 (G1) is a generator representing a large system. Data 

for the modeling of the test system was obtained from [29]. 

        The modeling and simulation of the test system were carried 

out using the Power System Simulator for Engineers (PSSE) 

software [30]. Cascading outage scenarios were created by 

creating three-phase faults at various buses and on various lines, 

and the resulting data used to test the proposed scheme. The 

proposed coherency algorithm was run on MATLAB® software. 

 

 
 

Figure 6. IEEE 39-bus test system 

Validation Results of Proposed Scheme 

Post-fault data corresponding to a time window of 0.5 s was 

chosen in order to accurately detect the consistency in the changes 

in the trajectories of the input parameter. Speed deviation data 

from 35 fault events were used to test the proposed scheme.  

 

A sample performance of the proposed method is presented for a 

three-phase fault on bus 32 with a base load condition. For this 

case, the fault was applied at time 𝑡1 = 0.2𝑠 and cleared at time 

𝑡2 = 1.2 𝑠, resulting in some generators going out of step. Figure 

7 shows a plot of the speed deviation data for the event. It can be 

observed from the figure that generators 2 and 3 (G2 and G3) 

form one coherent group while generators 4, 5, 6, 7, 8, and 9 (G4, 

G5, G6, G7, G8, and G9) form another coherent group, with 

Generators 1 and 10 (G1 and G10) being singleton clusters. The 

data from the same fault were used to simulate the case of 

inconsistent delay times. For example, the data from G4 was 

delayed by 60 ms to simulate a real-time relative transmission 

delay of 60 ms.  

          The normalized DTW dissimilarity matrix for this fault for 

consistent transmission delay times is as shown in Table 1. It can 

be noted that the dissimilarity values between generators in the 

same coherent group are small while those that are not coherent 

have high values. For example, for the third coherent group (G4, 

G5, G6, G7, G8, G9), the DTW dissimilarity value is 

approximately 0.05. Also, the dissimilarity between G2 and G3, 

which also form one coherent group, is 0.1. However, the 

dissimilarity value between G2 and G10 which are not coherent 

is 1.0. The DTW dissimilarity matrix for the 60 ms relative delay 

of data for G4 is as shown in Table 2. It can be observed that there 

are changes in the dissimilarity values of the group to which G4 

belongs. For example, the new dissimilarity value between G4 

and G8 is 0.1 as compared to the previous value (value in Table 

1) of 0.04. However, there was no significant change in 

dissimilarity value between G4 and other non-coherent 

generators.  

     Table 3 shows the C-index evaluated for various number of 

clusters for both consistent and inconsistent delay cases. It can be 

observed that for a cluster search range of [2,7], the cluster 

number K=4 has the least index, indicating the optimal number 

of clusters is 4. The coherent groups thus identified are as shown 

in Table 4.  The results indicate that, the scheme can accurately 

identify the coherent groups for both consistent and inconsistent 

data transmission delay times. Similar responses were obtained 

for the other 34 fault cases.  

 

 

 

Figure 7. Rotor speed deviations for a three-phase fault 

on Bus 32 

 

Table 1. Dissimilarity matrix for a three-phase fault on Bus 32 

for consistent transmission delay 

DTW 

 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 

G1 0.0 0.8 0.8 0.4 0.4 0.5 0.44 0.45 0.43 0.5 

G2 0.8 0.0 0.1 0.7 0.6 0.7 0.71 0.73 0.72 1.0 

G3 0.8 0.1 0.0 0.8 0.67 0.7 0.75 0.74 0.75 0.94 

G4 0.4 0.7 0.8 0.0 0.04 0.05 0.03 0.04 0.04 0.4 

G5 0.4 0.6 0.67 0.04 0.0 0.04 0.05 0.04 0.05 0.4 

G6 0.5 0.7 0.7 0.05 0.04 0.0 0.06 0.05 0.05 0.42 

G7 0.44 0.71 0.75 0.03 0.05 0.06 0.0 0.05 0.06 0.41 

G8 0.45 0.73 0.74 0.04 0.04 0.05 0.05 0.0 0.06 0.4 

G9 0.43 0.72 0.75 0.04 0.05 0.05 0.06 0.06 0.0 0.45 

G10 0.5 1.0 0.94 0.4 0.4 0.42 0.41 0.4 0.45 0.0 
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Table 2. Dissimilarity matrix for a three-phase fault on Bus 32 

for 60 ms transmission delay of G4 data 

DTW 

 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 

G1 0.0 0.8 0.8 0.55 0.4 0.5 0.44 0.45 0.43 0.5 

G2 0.8 0.0 0.1 0.75 0.6 0.7 0.71 0.73 0.72 1.0 

G3 0.8 0.1 0.0 0.83 0.67 0.7 0.75 0.74 0.75 0.94 

G4 0.55 0.75 0.83 0.0 0.1 0.12 0.09 0.1 0.11 0.45 

G5 0.4 0.6 0.67 0.1 0.0 0.04 0.05 0.04 0.05 0.4 

G6 0.5 0.7 0.7 0.12 0.04 0.0 0.06 0.05 0.05 0.42 

G7 0.44 0.71 0.75 0.09 0.05 0.06 0.0 0.05 0.06 0.41 

G8 0.45 0.73 0.74 0.1 0.04 0.05 0.05 0.0 0.06 0.4 

G9 0.43 0.72 0.75 0.11 0.05 0.05 0.06 0.06 0.0 0.45 

G10 0.5 1.0 0.94 0.45 0.4 0.42 0.41 0.4 0.45 0.0 

 

Table 3.  C-index of different numbers of clusters  for a fault on 

Bus 32 

K 2 3 4 5 6 7 

C-index 

for 

consistent 

delay 

0.68 0.53 0.42 0.64 0.76 0.82 

C-index 

for 60 ms 

delay of 

G4 data 

0.81 0.61 0.51 0.72 0.84 0.95 

 

Table 4. Formed coherent groups for a fault on Bus 32 

Type of event Clustering results 

Three-phase short circuit at bus 32 (1), (2,3) 

(4,5,6,7,8,9), (10) 

Three-phase short circuit at bus 32 

with 60 ms relative delay of PMU data 

from G4 

 

(1), (2,3) 

(4,5,6,7,8,9), (10) 

 DTW distance as an Index for Characterizing PMU 

data Transmission Delay of a WAMS  

The DTW distance is a function of the PMU data transmission 

delay and could be used as an index for characterizing the 

transmission delay of WAMS. This was validated by using data 

from 10 of the 35 three-phase fault simulations. A typical case is 

the fault on bus 32 as indicated earlier.  

 

In this analysis, two coherent generators (G4 and G6) were 

selected, and their post-fault time-domain variations observed as 

shown in Figure 8(a). The speed deviation data of G6 were then 

delayed relative to G4 in time steps of 20 ms from 0 s to 120 ms. 

A time-delay of 0s means the two trajectories are time-

synchronized. The normalized DTW distance for each time delay 

is computed and plotted against the relative delay time as shown 

in Figure 8(b). It can be observed from Figure 8(b) that the DTW 

distance between the two signals is proportional to the relative 

delay time.  

 

Thus, the DTW distance in addition to being used as a measure 

of coherency, can be used as an index to the transmission delay 

time experienced by a particular signal in WAMS. In other words, 

given a DTW distance, one can have an idea of the delay time of 

a system. The higher the delay time, the higher the DTW distance 

and vice versa.  

 

 
(a) 

 
(b) 

Figure 8. (a) Speed deviation trajectories of generators 4 and 6 

(b) DTW distance versus relative delay time 

 Validation of Data Delay Factor 

The data delay factor was validated by using 15 of the 35 fault 

cases.  One is the three-phase fault on Bus 32. This resulted in 

four clusters as earlier indicated in Figure 7. The validation was 

done by assuming three instances of data transmission delay. The 

first instance is when there are consistent transmission delay 

times, simulated by using the original data obtained from PSSE. 

The second and third cases involve the same fault event, however, 

the speed deviation data of G6 was intentionally delayed by 20 

ms and 60 ms respectively with respect to the other generators. 

The data delay factor matrices for the three instances are shown 

in Tables 5, 6 and 7. Only the upper diagonals are shown because 

the matrices are symmetrical. 

 

Table 5 shows the delay factor data for the case where there are 

consistent transmission delay times. It can be observed that the 

delay factors for all pairs of generators are approximately unity. 

This confirms the fact that for consistent transmission delays, the 

Euclidean distance (𝑑𝑒𝑢𝑐) closely tracks the DTW distance 

(𝑑𝑑𝑡𝑤)  for both coherent and non-coherent signal pairs as 

indicated earlier. 

 

Table 6 contains delay factors of pairs of generators for the same 

fault but for a relative delay of 20 ms for speed deviation data of 

G6. It can be observed from the matrix that the delay factors 

between G6 and generators belonging to other coherent groups, 

i.e., G1, G2, G3, and G10 are close to unity. However, the delay 

factors between G6 and generators in the same coherent group 



GIDEON ADOM-BAMFI / JURNAL NASIONAL TEKNIK ELEKTRO - VOL. 10 NO. 2 (JULY 2021) 

  https://doi.org/10.25077/jnte.v10n2.908.2021 130 

deviate largely from unity. For example, the delay factor between 

G6 and G8 belonging to the same cluster is 0.52, as opposed to 

the consistent transmission delays scenario value of 0.92 in Table 

5.  For the matrix in Table 7 corresponding to the relative delay 

of speed deviation data of G6 of 60 ms, it can be noted that the 

delay factors between G6 and associated coherent generators 

further deviate from unity. For instance, the delay factor between 

G6 and G8 is 0.14 as opposed to 0.52 for the 20ms-delay scenario. 

These also confirm the fact that for inconsistent transmission 

delay times, the Euclidean distance (𝑑𝑒𝑢𝑐) tracks the DTW 

distance (𝑑𝑑𝑡𝑤) for non-coherent signal pairs. However, for 

coherent signal pairs, the DTW distance deviates from the 

Euclidean distance, and this deviation is proportional to the 

relative delay time. 

 

Thus, the data delay factor can be used to determine, for a given 

disturbance, whether there is a relative transmission delay of a 

signal, and the generator(s) whose signal(s) is (are) experiencing 

such delay(s). This feature will further be explored in a future 

work to determine the necessary control signal to apply to a 

phasor data concentrator in the data transmission path.  

 

Table 5. Delay factor matrix for a fault on Bus 32 for consistent 

delay times. 

𝐝𝐝𝐭𝐰/𝐝𝐞𝐮𝐜 

 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 

G1  0.84 0.84 0.86 0.87 0.8 0.79 0.84 0.94 0.94 

G2   0.89 0.84 0.88 0.81 1.01 0.7 0.98 1.01 

G3    0.8 0.79 0.82 1.02 1.01 0.92 1.04 

G4     0.91 0.90 0.93 0.95 0.91 0.95 

G5      0.92 0.95 0.96 0.92 0.93 

G6       1.01 0.92 0.89 0.96 

G7        0.92 0.91 0.93 

G8         0.92 0.97 

G9          0.92 

           

Table 6. Delay factor matrix for a fault on Bus 32, with 20ms-

delay of speed deviation data of Generator 6. 

𝐝𝐝𝐭𝐰/𝐝𝐞𝐮𝐜 

 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 

G1  0.84 0.84 0.86 0.87 1.1 0.79 0.84 0.94 0.94 

G2   0.89 0.84 0.88 0.97 1.01 0.7 0.98 1.01 

G3    0.8 0.79 0.82 1.02 1.01 0.92 1.04 

G4     0.91 0.5 0.93 0.95 0.91 0.95 

G5      0.52 0.95 0.96 0.92 0.93 

G6       0.53 0.52 0.6 1.04 

G7        0.92 0.91 0.93 

G8         0.92 0.97 

G9          0.92 

           

 

 

Table 7. Delay factor matrix for a fault on Bus 32, with 60ms-

delay of speed deviation data of Generator 6. 

𝐝𝐝𝐭𝐰/𝐝𝐞𝐮𝐜 

 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 

G1  0.84 0.84 0.86 0.87 0.8 0.79 0.84 0.94 0.94 

G2   0.89 0.84 0.88 0.81 1.01 0.7 0.98 1.01 

G3    0.8 0.79 0.82 1.02 1.01 0.92 1.04 

G4     0.91 0.15 0.93 0.95 0.91 0.95 

G5      0.18 0.95 0.96 0.92 0.93 

G6       0.21 0.14 0.12 0.84 

G7        0.92 0.91 0.93 

G8         0.92 0.97 

G9          0.92 

           

CONCLUSIONS 

A method to determine coherent clusters of synchronous 

generators in power systems based on windowed dynamic time 

warping has been presented. It is an online method. The method 

uses rotor speed deviation as input parameter. Rotor deviations 

can be captured using phasor measurement units which makes the 

method feasible for practical implementation. The major merit of 

the technique is its ability to accurately identify coherent clusters 

in the event of inconsistent data delay or data loss. The method is 

accurate and can effectively aid intentional controlled islanding. 
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NOMENCLATURE 

δ speed deviation threshold 

ε warping window threshold 

γ cumulative distance matrix 

ɷ speed deviation, rad/s 
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