Evaluasi Keandalan Pembangkit Listrik Tenaga Surya yang Terhubung ke Grid

Main Article Content

Adrianti Adrianti

Keywords

Abstract

The reliability of a photovoltaic system is influenced by two kind of challenges i.e. the availability of the sunlight and the readiness of the PV system components to generate power. A PV system consists of electronic components which are placed outdoors and suffered harsh weather, therefore its reliability needs to be evaluated. Bayesian Networks are utilized to calculate the probabilities of having full and reduced power output of the PV system. The study results show that the reduced power output state of the PV system is twice more likely than the no-output state. In general, the reliability of the PV system is relatively good.

Keywords : Photovoltaic, Reliability and Bayesian Network


Abstrak— Keandalan Pembangkit Listrik Tenaga Surya (PLTS) dipengaruhi oleh dua jenis permasalahan yaitu ketersediaan cahaya matahari dan kesiapan peralatan PLTS untuk membangkitkan  daya listrik. Peralatan PLTS terdiri dari perangkat elektronik yang ditempatkan di luar ruangan dan mengalami berbagai kondisi cuaca, sehingga perlu dievaluasi keandalannya dalam membangkitkan daya listrik. Pada tulisan ini dilakukan evaluasi keandalan PLTS dari segi kesiapaan peralatan untuk membangkitkan daya. Metoda Bayesian Network digunakan dalam menghitung probabilitas PLTS untuk menghasilkan daya penuh dan tidak penuh (reduced output). Hasil yang diperoleh menunjukkan probabilitas kondisi tanpa output daya pada PLTS dua kali lebih sedikit dibandingan reduced output. Secara keseluruhan keandalan PLTS cukup baik.

Kata Kunci : PLTS, keandalan dan Bayesian Network


References

[1] KESDM. (2015). Renstra KESDM 2015.

[2] K. Kananda and R. Nazir, "Konsep Pengaturan Aliran Daya Untuk PLTS Tersambung ke Sistem Grid Pada Rumah Tinggal," Jurnal Nasional Teknik Elektro, vol. 2, pp. 65-71, September 2013.

[3] A. Bobbio, et al., "Improving the Analysis of Dependable Systems by Mapping Fault Tree into Bayesian Networks," Reliability Engineering and Safety, vol. 71, pp. 249 - 260, 2001.

[4] J. D. Andrews and T. R. Moss, Reliability and Risk Assessment, second ed. London: Professional Engineering Publishing, 2002.

[5] H. Langseth and L. Portinale, "Bayesian Networks in Reliability," Reliability Engineering and Safety, vol. 92, pp. 92-108, 2007.

[6] H. Boundali and J. B. Dugan, "A Discrete-time Bayesian Network Reliability Modelling and Analysis Framework," Reliability Engineering and Safety, vol. 87, pp. 337-349, 2005.

[7] Endecon_Engineering, "A Guide to Photovoltaic (PV) System Design and Installation," California Energy Commission, California, 2001.

[8] A. Colli, "Failure mode and effect analysis for photovoltaic systems," Renewable and Sustainable Energy Reviews, vol. 50, pp. 804-809, 2015.

[9] C. Honsberg and S. Bowden. (15 May 2016). Mismatch Effects in Arrays. Available: http://www.pveducation.org/pvcdrom/modules/mismatch-effects-in-arrays

[10] "IEEE Recommended Practice for the Design of Reliable Industrial and Commercial Power Systems (Gold Book)," IEEE Std 493-1997 [IEEE Gold Book], pp. 1-464, 1998.

[11] A. Golnas, "PV system reliability: an operator's perspective," Photovoltaics, IEEE Journal of, vol. 3, pp. 416-421, 2013.

[12] University_of_Pitssburgh, "GeNIe Modeller 2.1," ed. www.bayesifusion.com: Bayesfusion, access April 2016.

[13] C. Honsberg and S. Bowden. (15 may 2016). Mismatch for Cells Connected in Series. Available: http://www.pveducation.org/pvcdrom/modules/mismatch-for-cells-connected-in-series