Peramalan Irradiance Cahaya Matahari pada Sel Surya untuk Memenuhi Kebutuhan Energi Listrik dengan Metode Support Vector Regression (SVR)

Nurvita Arumsari, Feby Agung Pamuji

Abstract


This paper suggests the use of support vector regression (SVR) method for forecasting irradiance of sunlight on solar cells so that the energy produced by the solar cells can be predicted to meet electricity needs. This prediction is very important because to provide electrical energy that is sustainable and has a good reliability which has the constant frequency and constant voltage. From the simulation results can be seen that the SVR method has not a fairly good prediction results. So that, the approximate energy of solar cell that can be transfered to meet the electricity needs of the next month still not accurate with this method. Future research will be tried SVR hybrid time series method.

Keywords : Electrical Energy, Irradiance,Support vector regression (SVR).


Abstrak— Pada tulisan ini digunakan metode Support Vector Regression (SVR) untuk peramalan irradiance cahaya matahari pada sel surya sehingga besar energi yang dihasilkan sel surya bisa diprediksi untuk memenuhi kebutuhan energi listrik. Prediksi ini sangat penting dikarena untuk menyediakan energi listrik yang berkelanjutan dan mempunyai keandalan yang baik yaitu mempunyai frekuensi konstan dan tegangan konstan. Dari hasil simulasi dapat dilihat bahwa metode SVR mempunyai hasil prediksi yang masih rendah. Sehingga perkiraan energi solar cell yang dapat dikirim untuk memenuhi kebutuhan listrik satu bulan ke depan masih belum cukup akurat dengan menggunakan metode ini. Pada penelitian mendatang, akan dicoba penggunaan metode SVR berbasis time series.

Kata Kunci : Energi listrik, Irradiance, Support Vector Regression (SVR).



Full Text:

PDF

References


Alex J. Smola and Bernhard Scholkopf, A Tutorial on Support Vector Regression, Kluwer Academic, Statistics and Computing Journal, 14(2004), 199-222

Badescu, V., Modelling Solar Radiation at the Earth’s Surface, Berlin Heidelberg, Springer-Verlag, 2008

Feby AgungPamuji., Soedibyo., Desain Kontrol Multi – Input Dc – Dc Converter Sistem Hibrid Turbin Angin Dan Sel Surya Menggunakan Kontrol Fuzzy Logic Untuk Tegangan Rendah, Jurnal Nasional Teknik Elektro, Vol 4, No 2, 2015.

Feby agung pamuji, Hajime Miyauchi, “ Control Design Of Solar cell for Maximum Power Point Tracking Using Fuzzy Logic Controller to Supply 380 Volt Grid, IEEJ, March 2016, Tohoku University, 6-205.

Feby Agung Pamuji and Hajime Miyauchi, “A New Control Design of Maximum Power Point Tracking By Fuzzy Logic Controller for Wind Turbine Connected to Low Voltage Grid, ” International Seminar on Intelligent Technology and Its Applications (ISITIA) 2016.

Federico - Vladimir Gutierrez - Corea, Miguel-Angel Manso-Callejo, Maria-Pilar Moreno - Regidor, Maria Teresa Manrique-Sancho, Forecasting short-term solar irradiance based on artificial neural networks and data from neighboring meteorological stations, Elsevier Journal, Solar Energy 134(2016), 119-131

Guo-Feng Fan, Shan Qing, Hua Wang, Wei-Chiang Hong and Hong-Juan Li, Support Vector Regression Model Based on Empirical Mode Decomposition and Auto Regression For Electric Load Forecasting, Energies Journal 6(2013), 1887-1901

Hammer, A., Heinemann, D., Lorenz, E., Luckehe, B., Short-term Forecasting of Solar Radiation: a statistical approach using satellite data, Science Direct Journal, Solar Energy 67(1999, 1-3), 139-150

Kretzschmar, R., Eckert, P., Cattani, D., Eggimann, F., Neural Network Classifiers for Local Wind Prediction, Appl. Meteorology Journal 43(2004, 5), 727-738

Nonnenmacher, L., Coimbra, C.F.M., Streamline-based Method for Intra-day Solar Forecasting through Remote Sensing, Science Direct Journal, Solar Energy 108(2014), 447-459.

Richard Perez, Elke Lorenz, Sophie Pelland, Mark Beauharnois, Glenn Van Knowe, Karl Hemker Jr., Detlev Heinemann, Jan Remund, Stefan C. Muller, Wolfgang Traunmuller, Gerald Steinmauer, David Pozo, Jose A. Ruiz-Arias, Vicente Lara-Fanego, Lourdes Ramirez-Santigosa, Martin Gaston-Romero, Luis M. Pomares, Comparison of Numerical Weather Prediction Solar Irradiance Forecasts in the US, Canada and Europe, Elsevier, Solar Energy 94(2013), 305-326

Soedibyo, Feby Agung Pamuji and Mochamad Ashari, “Control Design of Photovoltaic BPSX-60 Using Fuzzy Logic Controller for Low Voltage Grid, “International Seminar on Intelligent Technology and Its Applications (ISITIA) 2015.

Soedibyo, Feby Agung Pamuji and Mochamad Ashari, Grid Quality Hybrid Power System Control of Microhydro, Wind Turbine and Fuel Cell Using Fuzzy Logic, International Review on Modelling and Simulations (I.RE.MO.S), Vol 6, No 4, Agust 2013, pp 1271 - 1278, Indexed in Scopus, ISSN : 1974 - 9821 / e-ISSN : 1974 - 983X.

Simon Haykin. (2008). Neural Networks and Learning Machines-Third Edition. Mc McMaster University, Hamilton Ontario Canada, Pearson Prentice Hall.

Wang, F., Mi, Z., Su, S., Zhao, H., Short-term Solar Irradiance Forecasting Model Based on Artificial Neural Network using Statistical Feature Parameters. Energies Journal 5(2012, 5), 1355-1370.

Y.-M. Chen, S.-C Hung, C.-S. Cheng, and Y.-C. Liu, “ Multi Input Inverter For Grid – Connected Hybrid PV/Wind Power System, “ IEEE, 2005.




DOI: https://doi.org/10.25077/jnte.v6n1.367.2017

Refbacks



  

       


 Statistic and Traffic