Implementasi Electrinic Nose Dan Support Vector Machine Pada Aplikasi Olfactory Mobile Robot Dalam Mengenali Gas

Rendyansyah - Rendyansyah, Aditya P.P. Prasetyo, Kemahyanto Exaudi

Abstract


The aroma of gas can be perceived by the human sense of smell. The presence of the scent comes from the gas source itself or the gas leaks through cracks such as valves or pipe connections. The smell of certain gases (gas with a stinging smell) can disrupt the human nervous system and nose. Hence, it is required a tool that can mimic the sense of smell which is called the electronic nose (abbreviated to e-nose). E-nose is a combination of two or more gas sensors. In a situation of searching the source of the gas scent, the e-nose was developed into a mobile robotic olfactory application for detection and identification process. In this study, the system was designed to recognize ethanol, benzene and thinner gases. The signal pattern recognition of e-nose uses the Support Vector Machine (SVM) programmed into the computer. Illustration of gas scent detected by e-nose produces a pattern of electrical signals that are wirelessly transferred to a computer and processed to be recognizable. The experimental results show that olfactory mobile robots can be applied to detect and identify types of gas with good accuracy, according to the value above 97% for kernel selection γ = 100 and γ = 1000.

Keywords : E-nose, Olfactory Mobile Robot, Support Vector Machine


Abstrak 

Aroma gas dapat dirasakan oleh indra penciuman manusia. Adanya aroma karena berasal dari sumber gas itu sendiri atau gas bocor melalui cela-cela seperti katup atau sambungan pipa. Aroma gas tertentu (gas dengan aroma yang menyengat) dapat mengganggu sistem saraf dan hidung manusia. Oleh karena itu perlu alat yang dapat meniru indra penciuman yaitu electronic nose (disingkat e-nose). E-nose merupakan kumpulan dari dua sensor gas atau lebih. Dalam situasi pencarian sumber aroma gas maka pada penelitian ini dikembangkan e-nose kedalam bentuk aplikasi olfactory mobile robot untuk deteksi dan identifikasi. Pada penelitian ini sistem dirancang untuk mengenali gas etanol, benzene dan thiner. Pengenalan pola sinyal dari e-nose menggunakan Support Vector Machine (SVM) yang sudah diprogram di dalam komputer. Secara ilustrasi aroma gas yang dideteksi oleh e-nose menghasilkan pola sinyal elektrik yang ditransfer via wireless ke komputer dan diproses untuk dikenali. Hasil percobaan menunjukkan bahwa olfactory mobile robot dapat diaplikasikan untuk mendeteksi dan mengidentifikasi jenis gas dengan akurasi yang baik, yaitu di atas 97% untuk pemilihan kernel γ = 100 dan γ = 1000.

Kata Kunci : E-nose, Olfactory Mobile Robot, Support Vector Machine


Full Text:

PDF

References


Ishida, H., Ushiku, T., Toyama, S., Taniguchi, H. dan Moriizum, T., Mobile Robot Path Planning Using Vision and Olfaction to Search for a Gas Source, Sensors, Hal. 1112-115, (2005).

Loutfi, A., Broxvall, M., Coradeschi, S., and Karlsson, L., Object Recognition: a New Application for Smelling Robots. Robotics and Autonomous Systems. Vol. 52, Issue 4. Hal. 272-289, (2005).

Loutfi, A., Coradeschi, S., Karlsson, L., and Broxvall, M., Putting Olfaction into Action: Using an Electronic Nose on a Multi-Sensing Mobile robot, IEEE/RSJ International Conference on. Vol. 1. Hal 337-342, (2004).

Frianto, H.T. dan Rivai, M, Implementasi Jaringan Syaraf Tiruan Backpropagation dan Self Organizing Map Menggunakan Sensor gas Semikonduktor Sebagai Identifikasi Jenis Gas, Seminar Nasional Informatika. Hal. 219-228, (2008).

Hasan, N., Ejaz, N., Ejaz, W., and Kim, H.S., Malicious Odor Item Identification using an Electronic Nose based on Support Vector Machine Classification, The 1st IEEE Global Conference on Consumer Electronics. Hal. 399-400, (2012).

Rabersyah, D., Firdaus dan Derisma, Identifikasi Jenis Bubuk Kopi Menggunakan Electronic Nose Dengan Metode Pembelajaran Bacpropagation, Jurnal Nasional Teknik Elektro, Vol. 5, No. 3, Hal. 332-338, (2016).

Rivai, M., Tasripan dan Rois, M., Klasifikasi Aroma Tembakau Menggunakan Deret Sensor Tin-Oxide dan Neural Network, JAVA Journal of Electrical and Electronics Engineering, Vol. 9, No. 2, Hal. 95-100, (2011).

Byun, H., and Lee S.W, A Survey on Pattern Recognition Applications of Support Vector Machines, International Journal of Pattern Recognition and Artificial Intelligence. Vol. 17, No. 3. Hal. 459-486, (2003).

Jiang, P., Zeng, M., Meng, Q., Li, F., dan Li, Y, A Novel Object Recognition Method for Mobile robot Localizing a Single Odor/Gas Source in Complex Environments. Robotics, Automation and Mechatronics, IEEE Conference. Hal. 1-5, (2008).

Wang, X., Zhang, H.R, dan Zhang, C.J, Signal Recognition of Electronic Nose Based on Support Vector Machines, Proceeding of the Fourth International Conference on Machine Learning and Cybernetics. Hal. 3394-3398, (2005).

Vijayakumar, S dan Wu, S., Sequential Support Vector Classifiers and Regression, Proceeding International Conference on Soft Computing (SOCO’99). Hal. 610-619, (1999).

Jiang, P., Hong, X., dan Ge, A., Mobile Robot Gas Source Localization Based on Behavior Strategies. Proceedings of the 33rd Chinese Control Conference. Hal. 8304-8308, (2014).




DOI: https://doi.org/10.25077/jnte.v7n1.475.2018

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

JNTE index by:

 

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Statistic and Traffic