Perbandingan Kinerja Support Vector Machine (SVM) Dalam Mengenali Wajah Menggunakan SURF DAN GLCM

Syamsul Bahri, Khairun Saddami, Fitri Arnia, Kahlil Muchtar


Face recognition is one part of the biometrics research. Face recognition is widely used in identification and recognition process. Speed-up Robust Feature (SURF) is one of feature extraction method used in face recognition system. This research aims to compare face recognition performance between SURF and Gray Level Co-occurence Matrix (GLCM) methods for perspective rotation. In this study, the image features were extracted using SURF and GLCM. Each feature was used on classification stage using Support Vector Machine (SVM). The dataset was obtained from National Cheng Kung University (NCKU). The NCKU dataset has more variation of rotation angle. The dataset used in this study consists of 10 classes that showed 10 of the subject. The results show that SURF method obtained 85% of accuracy and GLCM method reached 50% of accuracy. Therefore, we concluded that SURF method has better performance on implementing on face recognition system.

Keywords : SURF, GLCM, Face Recognition, SVM




Pengenalan wajah merupakan salah satu bagian dari penelitian biometrika. Pengenalan wajah banyak digunakan dalam proses identifikasi manusia. Metode ekstraksi fitur Speed-Up Robust Feature (SURF) merupakan salah satu metode yang digunakan untuk mengenali wajah. Penelitian ini bertujuan untuk membandingkan kinerja sistem pengenalan wajah dengan menggunakan metode ekstraksi fitur SURF dan Gray Level Co-occurence Matrix (GLCM). Pada penelitian ini, data input wajah akan diekstraksi fiturnya menggunakan SURF dan GLCM. Setiap fitur digunakan pada tahapan klasifikasi menggunakan Support Vector Machine (SVM). Data yang digunakan merupakan data yang didapatkan dari National Cheng Kung University (NCKU). Data wajah NCKU mempunyai sudut rotasi yang lebih banyak. Dataset yang digunakan pada penelitian ini terdiri dari 10 kelas yang menunjukkan 10 subjek penelitian. Pengenalan wajah menggunakan metode SURF dan SVM mempunyai akurasi 85%, sedangkan menggunakan metode GLCM mempunyai akurasi 50%. Hasil menunjukkan bahwa metode SURF mempunyai kinerja yang lebih baik dari metode GLCM.

Kata Kunci : SURF, GLCM, pengenalan wajah, SVM

Full Text:



F. P. Hilman, “Perbandingan Metode SURF dan SIFT dalam Identifikasi Tanda Tangan,” e-Proceeding Eng., vol. 2, no. 2, pp. 2467–2481, 2015.

H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features (SURF),” Comput. Vis. image Underst., vol. 110, no. 3, pp. 346–359, 2008.

M. M. El-Gayar, H. Soliman, and N. Meky, “A Comparative Study of Image Low Level Feature Extraction Algorithms,” Egypt. Informatics J., vol. 14, pp. 175–181, 2013.

D. Thachasongtham, T. Yoshida, F. De Sorbier, and H. Saito, “3D object pose estimation using viewpoint generative learning,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2013, pp. 512–521.

N. P. Ramaiah, E. P. Ijjina, and C. K. Mohan, “Illumination invariant face recognition using convolutional neural networks,” in Signal Processing, Informatics, Communication and Energy Systems (SPICES), 2015 IEEE International Conference on, 2015, pp. 1–4.

D. Chen, X. Cao, F. Wen, and J. Sun, “Blessing of dimensionality: High-dimensional feature and its efficient compression for face verification,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 3025–3032.

G. A. S. Saroja and C. H. Sulochana, “Texture analysis of non-uniform images using GLCM,” in 2013 IEEE Conference on Information and Communication Technologies, ICT 2013, 2013.

D. Gao, “Volume texture extraction for 3D seismic visualization and interpretation,” Geophysics, vol. 68, no. 4, pp. 1294–1302, 2003.

F. Tsai, C.-K. Chang, J.-Y. Rau, T.-H. Lin, and G.-R. Liu, “3D Computation of Gray Level Co-occurrence in Hyperspectral Image Cubes,” Energy Minimization Methods Comput. Vis. Pattern Recognit., pp. 429–440, 2007.

K. Saddami, K. Munadi, and F. Arnia, “Online Feature Extraction Technique for Optical Character Recognition System,” in Proceedings of International Conference on Engineering and Science of Research and Development, 2016, pp. 263–267.

F. Arnia and K. Munadi, Pengantar Teknik Pengolahan Citra dan Visi Komputer. Yogyakarta: Ombak, 2018.

R. Fan, P. Chen, and C. Lin, “Working Set Selection Using Second Order Information for Training Support Vector Machines,” J. Mach. Learn. Res., vol. 6, pp. 1889–1918, 2005.

F. Arnia, K. Saddami, and K. Munadi, “Moment invariant-based features for Jawi character recognition,” Int. J. Electr. Comput. Eng., vol. 9, no. 3, p. 1711, 2019.

K. Thirumala, M. S. Prasad, T. Jain, and A. C. Umarikar, “Tunable-Q wavelet transform and dual multiclass SVM for online automatic detection of power quality disturbances,” IEEE Trans. Smart Grid, vol. 9, no. 4, pp. 3018–3028, 2016.

C. Bo, H. Lu, and D. Wang, “Hyperspectral image classification via JCR and SVM models with decision fusion,” IEEE Geosci. Remote Sens. Lett., vol. 13, no. 2, pp. 177–181, 2015.

C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support vector machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, p. 27, 2011.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.




 Statistic and Traffic