Penentuan Posisi Sudut Matahari Menggunakan ANFIS dalam Aplikasi Tracker Panel Surya

Muhammad Irfan, Ilham Pakaya, Amrul Faruq

Abstract


Solar panels have constraints on output power that are not large enough and they are highly depend on natural conditions. Solar panel power depends on the intensity of sunlight received and the temperature of the surrounding environment. In order to get the maximum output power of the solar panel, an additional device called the solar tracker is needed. This research has contributed to increasing the output power of solar panels by directing solar panels perpendicular to sunlight. The use of this research is very useful in the application of the multi-axis tracker application from the sun. By knowing the rising angle of the sun every morning and the circulation angle to sunset, the tracker will work quickly so that the energy used for movement is very small. The reference angle generated by the ANFIS training algorithm is more accurate because the calculated data will be confirmed again by the sensor. And this system can work offline, without being connected to a data center, so it can be used in remote or isolated areas.

Keywords : Sun Tracking System, MPPT, ANFIS, Solar Panels

 

Abstrak

Panel surya memiliki kendala pada daya keluaran yang tidak cukup besar dan sangat tergantung oleh kondisi alam. Daya panel surya sangat tergantung dari intensitas cahaya matahari yang diterima dan suhu lingkungan sekitar. Agar mendapatkan daya keluaran panel surya yang maksimal dibutuhkan perangkat tambahan yang disebut tracker matahari. Penelitian ini memiliki kontribusi dalam meningkatkan daya keluaran panel surya dengan mengarahkan panel surya tegak lurus dengan cahaya matahari. Penggunaan penelitian ini sangat bermanfaat dalam penerapan aplikasi tracker multiaxis dari matahari. Dengan mengetahui sudut terbitnya matahari pada setiap pagi hari dan sudut edar sampai dengan terbenam, tracker akan bekerja dengan cepat sehingga energi yang digunakan untuk pergerakan sangat kecil. Sudut referensi yang dihasilkan oleh algoritma pelatihan ANFIS, lebih akurat karena data hasil perhitungan akan dikonfirmasi kembali oleh sensor. Serta sistem ini dapat bekerja secara offline, tanpa terhubung dengan pusat data, sehingga dapat digunakan pada area terpencil atau terisolasi.

Kata Kunci : Posisi Sudut Matahari, MPPT, ANFIS, Panel Surya

 


 


Full Text:

PDF

References


M. M. Arturo and G. P. Alejandro, “High – Precision Solar Tracking System,” in Proceedings of the World Congress on Engineering, 2010, vol. 2, pp. 2–4.

A. Ponniran and H. A. Munir, “A Design of Single Axis Sun Tracking System,” in International Power Engineering and Optimization Conference (PEOCO2011), 2011, no. June, pp. 107–110.

D. Mereddy, V. R. R. V, and T. Sadula, “Smart Dual Axes Solar tracking,” in 2015 International Conference on Energy Systems and Applications, 2015, no. 978, pp. 370–374.

A. El Hammoumi and A. El Ghzizal, “A simple and low- ­ cost active dual- ­ axis solar tracker,” Energy Sci. Eng., vol. 6, pp. 607–620, 2018.

J. Wang and C. Lu, “Design and Implementation of a Sun Tracker with a Dual-Axis Single Motor for an Optical Sensor-Based Photovoltaic System,” Sensors, vol. 13, pp. 3157–3168, 2013.

H. Mousazadeh, A. Keyhani, A. Javadi, H. Mobli, K. Abrinia, and A. Sharifi, “A review of principle and sun-tracking methods for maximizing solar systems output,” Renew. Sustain. Energy Rev., vol. 13, pp. 1800–1818, 2009.

M. Jamilu, “A Review on Solar Tracking Systems and Their Classifications,” J. Energy, Environ. Chem. Eng., vol. 2, no. 3, pp. 46–50, 2017.

L. Z. Yi et al., “Development of Algorithm for Single Axis Sun Tracking System,” in International Conference on Fundamental and Applied Sciences (ICFAS2016), 2016, vol. 2016, pp. 1–9.

B. Toual, L. Mokrani, A. Kouzou, and M. Machmoum, “Control And Management Of A Solar-Wind Hybrid System For Power Quality Improvement,” J. Eng. Sci. Technol., vol. 13, no. 6, pp. 1420–1439, 2018.

M. Engin and D. G. Engin, “Optimization Controller for Mechatronic Sun Tracking System to Improve Performance,” Adv. Mech. Eng., vol. 2013, pp. 1–9, 2013.

J. S. Jang Roger, “ANFIS: Adaptive-Network-Based Fuzzy Inference System,” IEEE Trans. Syst. Man Cybern., vol. 23, no. 3, pp. 665–685, 1993.

L. I. Kuncheva, Fuzzy Classifier Design. Springer Berlin Heidelberg, 2012.




DOI: https://doi.org/10.25077/jnte.v8n3.671.2019

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

        

 

.
 Statistic and Traffic