Pengaruh Penggunaan Pemancar-penerima pada Controller Area Network

Main Article Content

R Mochammad Affan Bagus Satria
Awang Noor Indra Wardana
Nazrul Effendy



Controller Area Network (CAN) is a communication network protocol that has been used in various fields as in automotive system to the industrial process. Input/output module as the CAN node in the network can be located nearby or distant from the controller. On the other hand, the CAN network must be designed to reduce the wiring harness significantly with latency as short as possible. CAN protocol can be built with and without the transceiver component. Analysis of the performance of both types of CAN network is conducted to know the exact distance to use transceiver. This research was conducted to analyze the impact of the transceiver on the latency of the CAN system, within the bus length variation. The transceiver and cable length variation were used as the factors of the statistical test that was conducted as the data analysis method in the research. The bus length varies from 50 m, 55 m, 60 m, 65 m, to 70 m. The two-way analysis of variance test and Tukey contrast test were used with a significance level of 0.05. There are three results of the two-way analysis of variance test, showing that significant differences have occurred on the effect of the transceiver, the bus length variation, and interaction between them, giving a p-value of 0.0003, 0.0008, and 0.0034 respectively. The results of the Tukey contrast test have shown that the latency of CAN systems without transceiver does not differ significantly on less than 65 m cable length. The analysis has concluded that the CAN system can well function without transceiver which is the cable length is less than 65 m.

Keywords : CAN, communication protocol, cable length variation, latency



Controller Area Network (CAN) merupakan suatu protokol jaringan komunikasi yang telah digunakan pada berbagai bidang seperti sistem kendaran bermotor sampai sistem industri proses. Modul masukan/keluaran sebagai node dalam jaringan CAN dapat terletak berdekatan dengan pengendali atau jauh dari pengendali. Di sisi lain, jaringan CAN harus memiliki sistem pengkabelan yang sederhana dan waktu latensi yang singkat. Jaringan komunikasi CAN dapat dibangun dengan menggunakan pemancar-penerima dan tanpa pemancar-penerima. Analisis performa dari kedua jaringan tersebut dilakukan untuk mengetahui pada panjang kabel berapa komponen pemancar-penerima dibutuhkan. Dalam penelitian ini, dilakukan analisis dari pengaruh komponen pemancar-penerima terhadap parameter latensi, dalam panjang kabel yang bervariasi. Terdapat dua faktor dalam melakukan analisis data, yaitu faktor komponen pemancar-penerima dan faktor variasi panjang kabel pada 50 m, 55 m, 60 m, 65 m, dan 70 m. Metode yang diimplementasikan dalam melakukan analisis data adalah uji analisis variasi dua jalur dan uji kontras Tukey, dengan tingkat signifikansi sebesar 0,05. Uji analisis variasi dua jalur memberikan tiga hasil nilai-p dari pengaruh pemancar-penerima, pengaruh variasi panjang kabel, serta interaksi dari keduanya, yaitu berturut-turut sebesar 0,0003, 0,0008, dan 0,0034. Hasil tersebut lebih kecil dari tingkat signifikansi yang digunakan, sehingga dapat ditarik kesimpulan bahwa komponen pemancar-penerima serta variasi panjang kabel mempengaruhi nilai latensi sistem secara signifikan. Hasil uji Tukey juga menunjukan bahwa selama panjang kabel kurang dari 65 m, latensi dari jaringan CAN tanpa pemancar-penerima tidak berbeda secara signifikan. Hasil analisis tersebut menunjukan bahwa bahwa jaringan CAN tanpa pemancar-penerima dapat digunakan dengan baik selama panjang kabel kurang dari 65 m.

Kata kunci : CAN, protokol komunikasi, variasi panjang kabel, latensi


A. S. Shinde, A. S. Deshpande, P. Kalamkar , A. R. Nichal, "Implementation of CAN Bus Protocol", International Journal on Recent and Innovation Trends in Computing and Communication. vol. 2, no. 6, pp.. 1568-1573, 2014.

S. Corrigan, Introduction to the Controller Area Network (CAN). Texas Instruments. Application Report: SLOA101B. 2016.

H. F Othman., Y. R. Aji, F. T Fakhreddin., A. R Al-Ali, "Controller Area Networks: Evolution and Applications". in Proceeding of 2nd Information and Communication Technologies, vol. 2, pp. 3088-3093, 2006.

H. Chen, "Research on the Controller Area Network", in. Proceeding of International Conference on Networking and Digital Society, pp. 251-254, 2009.

J. Barrenscheen, On-Board Communication via CAN without Transceiver. Siemens. Application Note: AP2921.

R. Boys.. CAN Primer: Creating Your Own Network. Keil. 2012.

M. Ranjith, Getting Started with Controller Area Network (CAN). Cypress Semiconductor. Application Note: AN52701. 2017

Datsheet Digital Storage Osciloscope- DSO5000P Series, Hantek, 2018.

J. M. Horgan, "Probability with R: an introduction with computer science applications," John Wiley & Sons, 2019

CAN Bus Data Cables: Delivering Signal & Supplying Power for Transportation Applications. General Cable Technologies Corporation. 2015.

Electrical Properties of Plastic Materials. Professional Plastics Inc, 2011.

American Wire Gauge (AWG) Conductor Size Table. Solaris, 2007

M. Reta-Hernandez. "Transmission Line Parameters". pada: Grigsby L. L. Editors. Electric Power Generation, Transmission, and Distribution. 2nd ed. Boca Raton: Taylor & Francis. 2006.

R. M. A. B. Satria, Analisis Parameter Latency pada Jaringan berbasis CAN Bus dengan Transceiver dan Tanpa Transceiver. Tugas Akhir. Yogyakarta, Universitas Gadjah Mada; 2018.

S. Corrigan, Controller Area Network Physical Layer Requirements. Texas Instruments. Application Report: SLLA270. 2008.

P. A. Richards, CAN Physical Layer Discussion. Microchip Technology Inc. Application Note: AN228. 2002.

Single Wire CAN Network for Vehicle Applications, SAE J2411, 2000