Komparasi dan Optimasi Model Propagasi Pada Sistem Komunikasi Seluler Di Kota Palembang

Mohammad Fadhli, Sopian Soim


Various propagation models can be used to predict path loss. Each propagation model is classified according to its environment categories. These environment categories are purely subjective, therefore to get accurate predictions, proper environment category selection is needed. In this paper, four propagation models are compared with RSL measurements at five sites in Palembang City. The models being compared are Okumura Hata, ECC-33, Ericsson, and SUI. Based on comparison using RMSE parameters, large urban is the appropriate environment category for Palembang City in the Okumura Hata model. For ECC-33, the appropriate environment category is medium urban. In the Ericsson model, the appropriate category is suburban, and terrain type A for SUI model. From the comparison of four models based on RMSE and standard deviations, it is known that for measurement results of five sites in Palembang City, the ECC-33 model has high accuracy with RMSE of 3,28 dB and standard deviation of 2,74 dB. After optimization, the Okumura Hata model provides an RMSE of 1,75 dB and a standard deviation of 0,76 dB. It is recommended to use the Medium Urban ECC-33 model or the optimized Large Urban Okumura Hata model to predict path loss in Palembang City.

Keywords : Propagation Models, Optimization, Environment Categories, Okumura Hata, ECC-33, Ericsson, SUI.'



Terdapat berbagai macam model propagasi yang dapat digunakan untuk memprediksi path loss. Setiap model propagasi diklasifikasikan berdasarkan kategori lingkungannya. Pembagian kategori lingkungan ini bersifat subjektif, sehingga untuk mendapatkan prediksi yang akurat diperlukan pemilihan kategori lingkungan yang tepat. Penelitian ini membandingkan empat jenis model propagasi dengan hasil pengukuran RSL pada lima site di Kota Palembang. Model yang dibandingkan adalah Okumura Hata, ECC-33, Ericsson dan SUI. Berdasarkan komparasi menggunakan parameter RMSE, Kota Palembang menurut model Okumura Hata termasuk dalam kategori large urban. Sedangkan pada model ECC-33 termasuk kategori medium urban. Pada model Ericsson termasuk kategori suburban, dan pada model SUI termasuk dalam tipe terrain A. Dari perbandingan keempat model berdasarkan RMSE dan standar deviasi, diketahui bahwa pada hasil pengukuran lima site di Kota Palembang, model ECC-33 memiliki akurasi yang tinggi dengan RMSE 3,28 dB dan standar deviasi 2,74 dB. Setelah dioptimasi, model Okumura Hata juga memberikan akurasi prediksi yang tinggi, dengan RMSE 1,75 dB dan standar deviasi 0,76 dB. Sehingga disarankan untuk menggunakan model ECC-33 medium urban atau model Okumura Hata large urban yang telah dioptimasi untuk mempredikasi path loss di Kota Palembang.

Kata Kunci : Model Propagasi, Optimasi, Kategori Lingkungan, Okumura Hata, ECC-33, Ericsson, SUI

Full Text:



A. R. Mishra, Fundamentals of Network Planning and Optimisation - 2G /2.5G /3G/4G...Evolution to 5G 2nd edition. 2018.

W. Lambrechts and S. Sinha, Terrestrial and Millimeter-Wave Mobile Backhaul: A Last Mile Solution, vol. 77. 2019.

J. Milanovic, S. Rimac-Drlje, and K. Bejuk, “Comparison of propagation models accuracy for WiMAXon3.5GHz,” in Proceedings of the IEEE International Conference on Electronics, Circuits, and Systems, 2007, pp. 111–114, doi: 10.1109/ICECS.2007.4510943.

K. Fujimoto, Mobile Antenna Systems Handbook 3rd edition. 2008.

J. C. Ogbulezie, M. U. Onuu, J. O. Ushie, and B. E. Usibe, “Propagation Models for GSM 900 and 1800 MHz for Port Harcourt and Enugu, Nigeria,” Netw. Commun. Technol., vol. 2, no. 2, pp. 1–10, 2013, doi: 10.5539/nct.v2n2p1.

O. F. Oseni, S. I. Popoola, R. O. Abolade, and O. A. Adegbola, “Comparative Analysis of Received Signal Strength Prediction Models for Radio Network Planning of GSM 900 MHz in Ilorin, Nigeria,” Int. J. Innov. Technol. Explor. Eng., no. 3, pp. 2278–3075, 2014, [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=

K. M. Udofia, N. Friday, and A. J. Jimoh, “Okumura-hata propagation model tuning through composite function of prediction residual,” Math. Softw. Eng., vol. 2, no. 2, pp. 93–104, 2016.

Rakesh. N and K.Srivasta, “A Study on Path Loss Analysis for GSM Mobile Networks for Urban, Rural and Suburban Regions of Karnataka State,” Int. J. Distrib. Parallel Syst., vol. 4, no. 1, pp. 53–66, 2013, doi: 10.5121/ijdps.2013.4105.

P. K. Sharma, D. Sharma, P. C. Sau, and A. Gupta, “Comparative analysis of propagation models in LTE networks with spline interpolation,” in 2nd International Conference on Communication, Control and Intelligent Systems, CCIS 2016, 2017, pp. 3–7, doi: 10.1109/CCIntelS.2016.7878189.

S. Tahcfulloh and E. Riskayadi, “Optimized Suitable Propagation Model for GSM 900 Path Loss Prediction,” TELKOMNIKA Indones. J. Electr. Eng., vol. 14, no. 1, 2015, doi: 10.11591/telkomnika.v14i1.7470.

M. P. A. Simarmata, S. Soim, and M. Fadhli, “Analisa Link Budget Dengan Perbandingan Pemodelan Propagasi Pada Komunikasi Selular Daerah Urban,” J. Elektro dan Telekomun. Terap., vol. 5, no. 2, p. 712, 2019, doi: 10.25124/jett.v5i2.1989.

T. S. Rappaport, Wireless Communications,Principles and Practice. 2002.

A. Aragon-Zavala, Indoor Wireless Communications. 2017.

A. Zreikat and M. Dordevic, “Performance Analysis of Path loss Prediction Models in Wireless Mobile Networks in Different Propagation Environments,” in Proceedings of the 3rd World Congress on Electrical Engineering and Computer Systems and Science, 2017, no. June, doi: 10.11159/vmw17.103.

M. Shahajahan and a Q. M. A. Hes-shafi, “Analysis of Propagation Models for WiMAX at 3.5 GHz,”.2009.

R. J. Hyndman and A. B. Koehler, “Another Look at Measures of Forecast Accuracy,” Int. J. Forecast., vol. 22,November, pp. 679–688, 2005, doi: 10.1016/j.ijforecast.2006.03.001.

R. Verma and G. Saini, “Statistical tuning of Cost-231 Hata model at 1.8 GHz over dense urban areas of Ghaziabad,” in Proceedings of the 10th INDIACom; 2016 3rd International Conference on Computing for Sustainable Global Development, INDIACom 2016, 2016, pp. 1220–1225, Accessed: Apr. 14, 2020. [Online]. Available: https://ieeexplore.ieee.org/document/7724461.

DOI: https://doi.org/10.25077/jnte.v9n2.773.2020


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.



 Statistic and Traffic