Classification Of Alcohol Type Using Gas Sensor And K-Nearest Neighbor

Main Article Content

Munaf Ismail
Sri Arttini Dwi Prasetyowati

Keywords

Abstract

Ethanol, isopropyl and methanol belong to the same alcohol group. The latter is commonly used as an industrial solvent, not for personal consumption. Many traditional alcoholic drink sellers often mix alcoholic beverages, which are commonly called as “oplosan”, this mixed drink is very dangerous for human if it contains methanol. Based on this problem, it is necessary to make a measuring device for the alcohol content in the liquid to classify the alcohol type. The design of this gas sensor-based alcohol classification system and method consists of a series of hardware and software applications. The block diagram of the alcohol classification system measures the ethanol and methanol substances in each alcoholic drink using the MQ3 gas sensor and WeMos as a data acquisition device and microcontroller. The computer was used to process the acquisition data from the gas sensor being used then calculates the K-Nearest Neighbor (K-NN) to obtain the prediction results. The K-NN system testing consists of testing the effect of the K value and testing its accuracy. The result of testing the effect of the K value produces 100% optimum accuracy at the values namely K=1, K=3, K=5, K=10 and 55% on K=20.

References

A. Yanti, S. Mursiti, N. Widiarti, B. Nurcahyo, and M. Alauhdin, “Indonesian Journal of Chemical Science Optimalisasi Metode Penentuan Kadar Etanol dan Metanol pada Minuman Keras Oplosan Menggunakan Kromatografi Gas ( KG ),” Indones. J. Chem. Sci., vol. 8, no. 1, pp. 54–59, 2019, [Online]. Available: http://journal.unnes.ac.id/sju/index.php/ijcs%0AOptimalisasi.

S. Iliev, “A comparison of ethanol, methanol, and butanol blending with gasoline and its effect on engine performance and emissions using engine simulation,” Processes, vol. 9, no. 8, 2021, doi: 10.3390/pr9081322.

R. H. Belvage, “Mabuk (di) Indonesia : Membongkar Struktur di Balik Fenomena Korban Tewas Karena Oplosan,” Umbara, vol. 2, no. 2, pp. 97–112, 2019, doi: 10.24198/umbara.v2i2.20450.

J. Huang and J. Wu, “Robust and rapid detection of mixed volatile organic compounds in flow through air by a low cost electronic nose,” Chemosensors, vol. 8, no. 3, 2020, doi: 10.3390/CHEMOSENSORS8030073.

A. Arisudin, M. Yahya, and D. Erwanto, “Klasifikasi Aroma Teh Dengan Menggunakan Sensor Gas Berbasis Arduino Uno,” JASEE J. Appl. Sci. Electr. Eng., vol. 2, no. 02, pp. 115–127, 2021, doi: 10.31328/jasee.v2i02.198.

A. Yanti, S. Mursiti, N. Widiarti, B. Nurcahyo, and M. Alauhdin, “Optimalisasi Metode Penentuan Kadar Etanol dan Metanol pada Minuman Keras Oplosan Menggunakan Kromatografi Gas (KG),” Indones. J. Chem. Sci., vol. 8, no. 1, pp. 53–59, 2019.

M. Ismail, A. Marwanto, J. P. Hapsari, and M. Haddin, “Embedded Alcohol Sensing Design And Analysis For Air Samples,” in 2021 8th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), 2021, pp. 85–89.

H. R. Estakhroueiyeh and E. Rashedi, “Detecting moldy bread using an e-nose and the KNN classifier,” in 2015 5th International Conference on Computer and Knowledge Engineering (ICCKE), 2015, pp. 251–255.

C. Deng et al., “Enhancing the discrimination ability of a gas sensor array based on a novel feature selection and fusion framework,” Sensors (Switzerland), vol. 18, no. 6, 2018, doi: 10.3390/s18061909.

M. Abbatangelo, E. Núñez-Carmona, V. Sberveglieri, E. Comini, and G. Sberveglieri, “k-NN and k-NN-ANN combined classifier to assess mox gas sensors performances affected by drift caused by early life aging,” Chemosensors, vol. 8, no. 1, 2020, doi: 10.3390/chemosensors8010006.

D. E. Williams, “Semiconducting oxides as gas-sensitive resistors,” Sensors Actuators B Chem., vol. 57, no. 1, pp. 1–16, 1999, doi: https://doi.org/10.1016/S0925-4005(99)00133-1.

J. Kong et al., “Nanotube Molecular Wires as Chemical Sensors,” Science (80-. )., vol. 287, no. 5453, pp. 622 LP – 625, Jan. 2000, doi: 10.1126/science.287.5453.622.

H. Nazemi, A. Joseph, J. Park, and A. Emadi, “Advanced micro-and nano-gas sensor technology: A review,” Sensors (Switzerland), vol. 19, no. 6, 2019, doi: 10.3390/s19061285.

N. M. Tulung, “Rancang Bangun Alat Pendeteksi Kadar Alkohol Melalui Ekhalasi Menggunakan Sensor Tgs2620 Berbasis Mikrokontroler Arduino Uno,” J. Tek. Elektro dan Komput., vol. 4, no. 7, pp. 15–24, 2015.

M. Ismail, A. D. Prasetyowati, and J. P. Hapsari, “Desain dan Implementasi Akuisisi Data Suhu Murid Sekolah Berbasis Arduino Untuk Monitoring Kesehatan Komunal,” J. Nas. Tek. Elektro, vol. 8, no. 2, pp. 58–64, 2019.

J. A. Firdaus et al., “Sistem Pengukur Kesegaran Daging Sapi menggunakan Metode K-Nearest Neighbor ( K-NN ) dengan Fitur Penambahan Data Latih berbasis,” vol. 4, no. 5, pp. 1555–1562, 2020.

K. Amiroh, D. Rahmawati, and A. Y. Wicaksono, “Intelligent System for Fall Prediction Based on Accelerometer and Gyroscope of Fatal Injury in Geriatric,” J. Nas. Tek. ELEKTRO, vol. 10, no. 3, 2021.

M. I. P. Putra, D. T. Murdiansyah, and A. Aditsania, “Implementasi Algoritma Modified K-Nearest Neighbor ( MKNN ) untuk Klasifikasi Penyakit Kanker Payudara Tugas Akhir diajukan untuk memenuhi salah satu syarat memperoleh gelar sarjana dari Program Studi S1 Ilmu Komputasi M Ikhsan Perdana Putra Program Studi,” E-proceeding Eng., vol. 6, no. 1, pp. 2431–2441, 2019.

T. H. Simanjuntak, W. F. Mahmudy, and Sutrisno Sutrisno, “Implementasi Modified K-Nearest Neighbor Dengan Otomatisasi Nilai K Pada Pengklasifikasian Penyakit Tanaman Kedelai,” Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 1, No.2, no. 2, pp. 75–79, 2017, [Online]. Available: http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/15/21.

Husnawati and R. R. Putra, “Sistem Klasifikasi Jenis Gas Alkohol dan Butana Menggunakan Metode Suport Vector Machine,” Pros. Annu. Res. Semin., vol. 4, no. 1, pp. 305–310, 2018.