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The Air Quality Index (AQI) is a metric for evaluating air quality in a region. Jakarta holds the 

fifth position globally in terms of air pollution. Several studies have been performed to forecast 

pollution levels in Jakarta. However, existing studies exhibit limitations such as outdated 

datasets, lack of data normalization, absence of machine learning parameter setting, neglect of 

k-fold cross-validation, and a failure to incorporate deep learning algorithms for pollution 

detection. This study introduces an air quality detection system called APD-BayTM to address 

these issues. This proposed system leverages Long Short-Term Memory (LSTM) and uses 

Bayesian Optimization (BO) to enhance the performance of air pollution detection. The 

methodology used in this research involves four key steps: data preprocessing, LSTM model 

development, hyperparameter tuning through BO, and performance assessment using 5-fold 

cross-validation. APD-BayTM exhibits robust performance that is comparable to previous 

research outcomes. The LSTM model in APD-BayTM on the training dataset achieved average 

precision, recall, F1 score, and accuracy values of 93.29%, 91.41%, 91.89%, and 95.90%, 

respectively. These metrics improved on the test dataset, reaching 97.44%, 99.71%, 98.52%, 

and 99.34%, respectively. These findings show the robustness of APD-BayTM across datasets 

of varying sizes, encompassing both large and small datasets. 
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INTRODUCTION 

The assessment of air quality in a particular area relies heavily on 

the Air Quality Index (AQI) [1], [2], which is determined by 

measuring different air pollutants and evaluating their potential 

health effects [3]. Jakarta, the capital of Indonesia, has an 

unenviable record of having the highest global air pollution 

levels. According to IQAir, a Swiss air filtration company that 

monitors worldwide air quality, Jakarta ranks fifth in AQI scores 

[4]. 

 

As per the 2019 World Health Organization (WHO) report, 

around 4.2 million premature deaths occur annually worldwide 

due to air pollution [5]. Additional research [6] and [7] delineate 

the primary origins and adverse consequences of air pollution, 

including impacts on respiratory health and other diseases and its 

role in contributing to global warming. Commonly identified 

sources of air pollution involve household combustion tools, 

motor vehicles, industrial facilities, and occurrences like forest 

fires [8]. 

 

Several studies have been conducted to predict Jakarta's Air 

Quality Index (AQI). In 2022, Permai et al. [9] conducted 

research using a Support Vector Machine (SVM) and Multilayer 

Perceptron (MLP). The results showed impressive accuracy 

levels of 98% and 92%, respectively. The following year, 

Muljana et al. [10] conducted a study using a Random Forest 

Classifier (RFC), achieving an outstanding accuracy rate of 95%. 

The same year, Rafif et al. [11] conducted research using 

Decision Tree and SVM, obtaining accuracy rates of 87.86% and 

90.56%, respectively. 

 

Although the achieved accuracy in the mentioned studies ([9], 

[10], [11]) is relatively high, these studies still have some 

shortcomings. Firstly, these studies did not perform 

normalization on their datasets. Normalization is a crucial aspect 

of data processing, aiming to create uniformity and ensure 

variables have a consistent scale [12], [13]. This precautionary 

measure is vital to avoid potential issues such as unwanted 

dominance or bias in experimental results [14], [15]. 

 

Secondly, studies [10] and [11] did not include hyperparameter 

tuning, which is a crucial key to optimizing model performance 

[16], [17]. On the other hand, the study [9] only performed 

hyperparameter tuning on the MLP model, and the specific 

method used was not detailed. Additionally, the [9] research did 

http://jnte.ft.unand.ac.id/
http://jnte.ft.unand.ac.id/
http://creativecommons.org/licenses/by-nc-sa/4.0/


FIRST AUTHOR / JURNAL NASIONAL TEKNIK ELEKTRO - VOL. XX NO. XX (XXX 20XX) 

https://doi.org/10.25077/jnte.v13n2.1183.2024   93 

not incorporate k-fold cross-validation in evaluating the 

performance of their models. Using k-fold cross-validation 

enhances result reliability by assessing the models’ performance 

across multiple subsets of the dataset [18]. 

 

In addition to the previously mentioned limitations, there are 

crucial aspects related to the data used in the studies [9], [10], 

[11]. All three studies utilized datasets from the same source, 

namely the official Jakarta Open Data website. Notably, these 

studies did not incorporate the most recent complete dataset 

available, specifically the 2021 dataset accessible on Jakarta 

Open Data. This latest dataset introduces a new parameter, 

PM2.5, which was absent in the datasets used in studies [9], [10], 

[11]. 

 

Lastly, an important point is that those studies did not explore 

utilising deep learning algorithms for predicting the Air Quality 

Index (AQI) in Jakarta. While they achieved commendable 

accuracy using Support Vector Machine (SVM), Multilayer 

Perceptron (MLP), Random Forest Classifier, and Decision Tree, 

the absence of deep learning algorithms in their experiments 

represents a notable gap. Integrating deep learning methodologies 

could potentially lead to substantial improvements in AQI 

prediction results, given the ability of deep learning models to 

capture intricate patterns and dependencies within complex 

datasets [19]. Considering deep learning approaches could offer 

a more sophisticated and nuanced understanding of air quality 

dynamics in Jakarta. 

 

To address the identified shortcomings in previous studies, we 

propose an air quality detection system in Jakarta based on the 

Long Short-Term Memory (LSTM) deep learning algorithm in 

this study. It leverages the LSTM architecture and enhances its 

performance through Bayesian Optimization (BO). The proposed 

system, APD-BayTM, is designed to accurately predict Jakarta's 

Air Quality Index (AQI). 

 

This study focuses on integrating the Long Short-Term Memory 

(LSTM) model into the APD-BayTM system. By incorporating 

Bayesian Optimization for parameter tuning, the study aims to 

significantly enhance the model's predictive capabilities, 

specifically in forecasting Jakarta's AQI. Utilizing the latest 

dataset sourced from the Jakarta Open Data website, which 

includes crucial parameters like PM2.5, ensures the relevance of 

the data to current air quality conditions in Jakarta. Additionally, 

this study emphasizes the normalization of the dataset to maintain 

consistency and ensure that all variables maintain a uniform scale, 

thus mitigating potential biases and improving the reliability of 

experimental outcomes. 

 

The APD-BayTM system's anticipated success is poised to 

positively impact the comprehension and management of air 

quality challenges in metropolitan cities. This study will 

contribute significantly to the existing air quality prediction 

literature by prioritizing deep learning methods and parameter 

optimization. Furthermore, the success of this system is likely to 

inspire the development of more sophisticated and accurate 

prediction methods in the future, further advancing the field of air 

quality assessment and management. 

RELATED WORK 

Numerous studies have been conducted on Air Quality Index 

(AQI) predictions. In a study by Almaliki et al. [20], various 

machine learning models, including Fine Decision Tree (FDT), 

Ensemble Boosted Tree (EBOT), and Ensemble Bagged Tree 

(EBAT), were proposed for AQI detection, utilizing data from 

2016 to 2018. The experimental results demonstrated that the 

EBOT model outperformed other models, achieving an accuracy 

of 97.4%. 

 

A study by Saminathan et al. [21] has considered several machine 

learning algorithms, such as Logistic Regression, SVM, Random 

Forest, Extreme Gradient Boosting, and Multilayer Perceptron, to 

classify PM2.5. Furthermore, a SMOTE-based approach was 

employed to address data imbalance, and the results demonstrated 

that using Random Forest with balanced data yielded superior 

accuracy. 

 

In India, Babu et al. [22] used Logistic Regression, Random 

Forest, K-Nearest Neighbours, Decision Tree, and SVM for air 

quality prediction. The experimental results showed that, 

although its accuracy is not explicitly mentioned, the Decision 

Tree is the most proficient machine learning algorithm for 

detecting the Air Quality Index (AQI).  

 

A study by Pant et al. [23] focused on predicting AQI based on 

PM10, PM 2.5, SO2, and NO2 pollutants, with the Decision Tree 

Classifier demonstrating the highest accuracy (98.63%) among 

the models developed. Logistic Regression had the lowest 

accuracy at 91.78%. 

 

In a study [24], Attaallah et al. developed five machine learning 

models, including a novel SMOTEDNN model for air pollution 

classification. The SMOTEDNN model achieved the highest 

accuracy (99.90%) compared to other models. 

 

Additionally, a study by Ragab et al. [25] proposed a forecasting 

model using a One-Dimensional Deep Convolutional Neural 

Network (1D-CNN) and Exponential Adaptive Gradients 

optimization for predicting the Air Pollution Index (API) in 

Klang. The model exhibited better accuracy than the benchmark 

model, showcasing various performance metrics. 

 

A study by Toharudin et al. [26] tackled imbalanced data related 

to PM2.5 concentrations, employing boosting algorithms like 

AdaBoost, XGBoost, CatBoost, and LightGBM. The boosting 

methods effectively reduced bias and improved variance 

reduction, resulting in improved classification performance. 

 

In a study by Permai et al. [9], Support Vector Machine (SVM) 

and Multilayer Perceptron (MLP) models were employed to 

classify air quality in Jakarta based on the Air Pollution Standard 

Index (ISPU) dataset from 2018 to 2021. The SVM model with a 

Polynomial kernel demonstrated excellent detection performance 

across various metrics, including accuracy, recall, precision, and 

F1 score. In their experiments, the accuracy metric reached an 

impressive 98%. In contrast, the MLP model achieved a slightly 

lower metric score. 
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A study by Muljana et al. [10] utilized a Random Forest Classifier 

(RFC) to predict AQI in Jakarta, addressing class imbalance with 

the SMOTE-tomek technique. Results indicated favourable 

performance metrics for RFC, with average precision, recall, F1 

score, and accuracy reaching 87.00%, 95.00%, 90.00%, and 

95.00%, respectively. 

 

Subsequently, a study by Rafif et al. [11] focused on Decision 

Tree and SVM models for AQI prediction in Jakarta, using the 

same dataset as [10] and addressing class imbalance with the 

SMOTE-ENN technique. The Decision Tree and SVM models 

demonstrated good performance, with various metrics indicating 

their effectiveness. 

 

Lastly, a study by Vlachou et al.[27] developed a classification 

model using Bayesian Logistic Regression with Markov Chain 

Monte Carlo (MCMC) sampling technique, achieving a 

maximum accuracy of 87.91%. However, it slightly lagged 

behind traditional Frequency Logistic Regression regarding 

accuracy and Area Under the Curve (AUC) score. 

 

Table 1 summarises the methodologies, use cases, and results 

from recent air quality index prediction or classification studies. 

 

Table 1. Related Work Summary 

Reference Methodology Use Case Result 

Almaliki et 

al. [20] 

FDT, EBOT, 

EBAT 

AQI 

prediction 

EBOT: 

97.4% 

Accuracy 

Saminatha

n et al. 

[21] 

Logistic 

Regression, 

SVM, Random 

Forest, 

XGBoost, MLP 

PM2.5 

Classificati

on 

Random 

Forest 

(Balanced): 

Superior 

Accuracy 

Babu et al. 

[22] 

Logistic 

Regression, 

Random Forest, 

KNN, Decision 

Tree, SVM 

Air 

Quality 

Prediction 

(India) 

Decision 

Tree: 

Proficient 

AQI 

Detection 

Pant et al. 

[23] 

Decision Tree 

Classifier 

AQI 

Prediction 

based on 

PM10, 

PM2.5, 

SO2, NO2 

Decision 

Tree: 98.63% 

Accuracy 

Attaallah 

et al. [24] 

SMOTEDNN, 

various ML 

models 

Air 

Pollution 

Classificati

on 

SMOTEDNN

: 99.90% 

Accuracy 

Ragab et 

al. [25] 

1D-CNN, 

Exponential 

Adaptive 

Gradients 

API 

Prediction 

(Klang) 

Outperforme

d Benchmark 

Model 

Toharudin 

et al. [26] 

Boosting 

Algorithms 

(AdaBoost, 

XGBoost, 

CatBoost, 

LightGBM) 

Imbalance

d PM2.5 

Data 

Improved 

Classification 

Performance 

Reference Methodology Use Case Result 

Permai et 

al. [9] 
SVM, MLP 

AQI 

Prediction 

(Jakarta) 

SVM 

(Polynomial 

Kernel): 98% 

Accuracy 

Muljana et 

al. [10] 

RFC (SMOTE-

tomek for Class 

Imbalance) 

AQI 

Prediction 

(Jakarta) 

RFC: 87.00% 

Precision, 

95.00% 

Recall, 

90.00% F1, 

95.00% 

Accuracy 

Rafif et al. 

[11] 

Decision Tree, 

SVM 

(SMOTE-ENN 

for Class 

Imbalance) 

AQI 

Prediction 

(Jakarta) 

Good 

Performance 

Across 

Metrics 

Vlachou et 

al. [27] 

Bayesian 

Logistic 

Regression 

(MCMC 

Sampling) 

Air 

Quality 

Classificati

on 

Maximum 

Accuracy: 

87.91% 

PROPOSED AIR POLLUTION DETECTION 

USING BAYESIAN LSTM (APD-BAYTM) 

The APD-BayTM system is designed to predict air quality levels 

categorized as GOOD, MODERATE, and UNHEALTHY. As 

illustrated in Figure 1, the system consists of two primary stages: 

preprocessing and classification. Tasks such as addressing 

missing values, normalization, and handling categorical data are 

performed in the preprocessing step. Following this, the 

classification process employs LSTM models, with model 

parameters optimized using Bayesian Optimization. The 

implementation of the LSTM model utilizes version 2 of the 

TensorFlow library. 

 

 
 

Figure 1. The Proposed APD-BayTM 

 

Long Short-Term Memory (LSTM) 

The Long Short-Term Memory (LSTM) is a model or architecture 

specifically developed to overcome the shortcomings of 

conventional Recurrent Neural Networks (RNNs), which exhibit 

limited short-term memory and necessitate extended training 

periods [28]. 

 

In contrast to traditional RNNs, LSTMs employ an auxiliary 

memory unit to assess the importance of information through a 

more sophisticated stochastic model. Its typical architecture 

features a "long-time memory function," enabling it to address 

long-term nonlinear sequential prediction challenges by 

incorporating a gating cell. Moreover, LSTMs tackle the issues of 
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gradient vanishing and explosion during prolonged training 

sequences, a drawback often encountered in standard RNNs [29].  

 

Unlike regular RNNs, LSTMs replace neurons in the hidden layer 

with memory cells equipped with gating mechanisms. The output 

gate adjusts the value transferred to the output from the current 

state, and the input gate enhances the current input before adding 

it to the next state. The forget gate selectively determines which 

elements of the current state should be carried forward. 

 

The structure of the LSTM model developed in this study is 

depicted in Figure 2. This model comprises three layers arranged 

in sequence. The initial layer is an LSTM layer with 57 units. The 

choice of 57 units in this layer results from hyperparameter tuning 

using Bayesian Optimization (BO). It was observed that this 

configuration struck a balance between model complexity and 

computational efficiency. The aim is to ensure the network's 

capacity to recognize essential temporal features while avoiding 

unnecessary complexity that may lead to overfitting or 

computational overhead. 

 

The second layer is another LSTM layer with 67 units. Building 

upon the insights gained from the first layer, the second LSTM 

layer is introduced to enhance the model's capability to capture 

more intricate temporal relationships. This augmentation helps in 

accommodating potential complexities that may not be 

adequately captured by the first layer alone. The specific choice 

of 67 units results from hyperparameter tuning using BO, aiming 

for a nuanced representation of temporal dependencies without 

overwhelming the model with unnecessary parameters. 

 

Finally, the third layer is a dense layer featuring three units, 

aligning with the number of classes intended for prediction 

(Good, Moderate, Unhealthy). This layer utilizes the softmax 

activation function to produce a probability distribution of 

classes, serving as the model's classification output. The decision 

to use softmax activation, as opposed to other activation methods, 

stems from its suitability for multiclass classification problems. 

Softmax ensures that the predicted class probabilities sum to one, 

providing a transparent and interpretable output for classification 

tasks. 

 
 

Figure 2. LSTM Model Architecture 

 

BAYESIAN OPTIMIZATION 

Iteratively adjusting hyperparameters through trial and error can 

be laborious and often unproductive [30]. Therefore, efficient 

tuning methods become crucial, mainly when the objective of 

optimization is to identify the optimal value at a specific sample 

point for an unknown function, as outlined in equation (1) [31]. 

𝑝+ = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑝∈∅𝜗(𝑝)                                                      (1) 

Here, 𝑝 represents the sampling point, 𝜙 signifies the search 

region around 𝑝, 𝜗 denotes the unknown objective function, and 

𝑝+ denotes the location where the unidentified objective function 

is to be maximized. 

 

Bayesian optimization (BO) emerges as a more efficient 

technique for hyperparameter optimization compared to 

traditional grid search (GS) and random search (RS) methods. In 

both GS and RS iterations, evaluations are conducted 

independently of prior assessments, resulting in inefficient 

allocation of time evaluating poorly performing regions within 

the hyperparameter search space. BO addresses this challenge by 

incorporating prior information about the unknown objective 

function 𝜗 and sample locations to estimate the distribution of the 

objective function using the Bayesian theorem. This posterior 

information is then used to seek the globally optimal value [32]. 

 

The Bayesian optimization process comprises two key phases 

[33]. In the first phase, the BO algorithm randomly selects data 

points to construct a surrogate function across the unknown 

objective function 𝜗. A Gaussian process (GP) is employed to 

update the surrogate function and generate the posterior 

distribution over 𝜗 due to its versatility, robustness, accuracy, and 

analytical convenience. 

 

An acquisition function is formulated in the second phase, 

utilizing the posterior distribution generated in phase one. This 

function aims to explore new areas within the search space while 

exploiting existing regions with the best results. The exploration 

and exploitation processes continue until a predefined stopping 

threshold is reached, during which the surrogate model is 

continuously updated with fresh results. The objective is to 

maximize the acquisition function to identify the next sampling 

point. 

METHODS 

This section outlines the materials and methods employed in the 

present study. The materials include the dataset and matrices 

utilized to assess the performance of the APD-BayTM model. 

Meanwhile, the method includes a step-by-step procedure for 

developing the APD-BayTM system. 

Materials 

Dataset 

The dataset utilized in this study comprises Standard Air 

Pollution Index (ISPU) data obtained from five air quality 

monitoring stations (SPKU) in Jakarta Province, Indonesia, for 

the year 2021 [34]. Data collection occurred from January 2021 

to December 2021, resulting in 1809 data points. The dataset is 

accessible on the Open Data Jakarta website [34]. For a 

comprehensive understanding of the dataset attributes, refer to 

Table 2. 

 

The AQI categories within the dataset adhere to the Regulation of 

the Minister of Environment and Forestry of the Republic of 

Indonesia Number P.14/MENLHK/SETJEN/KUM.1/7/2020, 

outlining the Standard Air Pollution Index [35]. This regulation 

states that ISPU is categorized into five levels: Good, Moderate, 

Unhealthy, Very Unhealthy, and Dangerous. ISPU incorporates 
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parameters such as particulate matter 10 (PM10), particulate 

matter 2.5 (PM2.5), carbon monoxide (CO), nitrogen dioxide 

(NO2), sulfur dioxide (SO2), ozone (O3), and hydrocarbons 

(HC). Equation (2) is utilized to calculate the ISPU value. 

 

Table 2. Dataset Attribute 

Column Type Description 

Date Date Date of air quality measurement 

Station String Location of data collection 

PM10 Int 
Particulate matter with a diameter of less 

than 10 micrometres 

PM2.5 Int 
Particulate matter with a diameter of less 

than 2.5 micrometres 

SO2 Int Sulphide (in the form of SO2) 

CO Int Carbon Monoxide 

O3 Int Ozone 

NO2 Int Nitrogen Dioxide 

Max Int 
The highest measured value among all 

parameters at the same time 

Critical String 
Parameter with the highest measurement 

result: PM10, PM2.5, SO2, CO, O3, NO2 

Category String 
Category of AQI calculation results: 

GOOD, MODERATE, UNHEALTHY 

𝐼 =  
𝐼𝐻𝑖𝑔ℎ−𝐼𝐿𝑜𝑤

𝑋𝐻𝑖𝑔ℎ−𝑋𝐿𝑜𝑤
(𝑋𝑥 − 𝑋𝐿𝑜𝑤) + 𝐼𝐿𝑜𝑤                                (2) 

Here, 𝐼 represent the AQI sub-index value for air quality 

pollutants (PM10, PM2.5, CO, NO2, SO2, O3, HC). 𝐼𝐻𝑖𝑔ℎ and 

𝐼𝐿𝑜𝑤 are AQI's upper and lower limits for a specific pollutant. 

𝑋𝐻𝑖𝑔ℎ and 𝑋𝐿𝑜𝑤 are the upper and lower limits of the pollutant 

concentration. 𝑋𝑥 is the concentration of the pollutant. After 

computing all AQI sub-indices, the sub-index with the highest 

value is selected as the AQI. The air quality category, determined 

based on the calculated AQI, along with explanations for each 

category, is detailed in Table 3. 

 

Table 3. AQI Category 

Range Category Explanation 

1-50 Good 

Excellent air quality poses no 

adverse effects on humans, 

animals, and plants. 

51-100 Moderate 
Air quality is still acceptable for 

human, animal, and plant health. 

101-

200 
Unhealthy 

Air quality that is harmful to 

humans, animals, and plants. 

201-

300 

Very 

Unhealthy 

Air quality can increase health 

risks for specific exposed segments 

of the population. 

301+ Hazardous 

Air quality can cause severe health 

damage to the population and 

requires prompt intervention. 

 

Despite government regulations stipulating five categories 

(Good, Moderate, Unhealthy, Very Unhealthy, and Hazardous) 

and seven pollutants (PM10, PM2.5, CO, NO2, SO2, O3, HC), 

this study focuses on three categories (Good, Moderate, 

Unhealthy) and six pollutants (PM10, PM2.5, CO, NO2, SO2, 

O3). The decision is based on the limitations of the available 

dataset, which does not include the specified categories and 

pollutants. 

Metrics 

The performance evaluation of the developed model will rely on 

accuracy, precision, recall, and F1-score. Accuracy represents the 

ratio of correct predictions (both positive and negative) to the 

total number of predictions. Precision is the ratio of true positive 

predictions (TP) to the total positive predictions performed (true 

positive and false positive). Recall is the ratio of true positive 

predictions (TP) to the total actual positive class instances (TP 

and false negative (FN)). F1-Score serves as a combined measure 

of precision and recall. The accuracy, precision, recall, and F1-

score equations are provided in Equation (3) through (6). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡
 𝑥 100%   (3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 𝑥 100%  (4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 𝑥 100%  (5) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  2 𝑥 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 𝑥 100  (6) 

Methods To Develop AQI Prediction LSTM Model 

This study aims to develop an air quality detection system for 

Jakarta using the LSTM deep learning algorithm optimized 

through Bayesian Optimization (APD-BayTM). The detection 

classes are categorized into GOOD, MODERATE, and 

UNHEALTHY. The APD-BayTM model is developed in two 

scenarios.  

 

 
 

Figure 3. Workflow Method to Develop Model with The Default 

Parameters 

 

In the first scenario, the model is built with default parameters, 

while in the second scenario, hyperparameter tuning is performed 
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using Bayesian optimization. The steps involved in developing 

the model for the first scenario are illustrated in Figure 3. 

 

Figure 4 depicts the steps in developing the second scenario's 

model. The procedures in both scenarios closely mirror each 

other. Initially, preprocessing is done on the dataset, dividing the 

data into training and testing sets. Subsequently, the LSTM model 

is constructed. In the subsequent step, in the first scenario, the 

performance of the developed models is directly assessed. 

Conversely, hyperparameter tuning is implemented in the second 

scenario before evaluating the model's performance. 

 

 
 

Figure 4. Workflow Method to Develop Model with 

Hyperparameter Tuning 

Data Preprocessing 

Figure 5 presents the visual representation of the data 

preprocessing steps that were conducted. Initially, the attributes 

date, station, max, and critical were eliminated as they are not 

utilized in the training process. Subsequently, missing values, 

represented by "---" in this dataset, were addressed by replacing 

them with "NaN" (Not-a-Number) using the pandas library. 

Following this, rows containing NaN values were removed to 

ensure the use of complete data. 

 

After handling missing data, the next step involved feature 

normalization, a process of scaling all features in the dataset to 

have a consistent range. This step is crucial to prevent any single 

feature from exerting a disproportionate influence on our model. 

For feature normalization, the Min-Max Scaler from the scikit-

learn library was employed. 

 
 

Figure 5. Flowchart Data Preprocessing 

 

The LabelEncoder function from the Keras library is utilized to 

transform string values in the category output column into 

numeric values to predict air pollution data. This conversion 

assigns the label "Good" to 0, "Moderate" to 1, and "Unhealthy" 

to 2. Subsequently, the data is divided, with 90% allocated for 

training and validation and the remaining 10% reserved for 

evaluating the performance of the trained and validated models. 

The data splitting process is carried out using the train_test_split 

function. 

Experiment Scenario 

Two scenarios are employed in developing the APD-BayTM 

model in this research. 

Default Parameters 

In this scenario, the models are developed using the default 

parameters. The LSTM models are constructed using TensorFlow 

v2 [36]. Table 4 displays the default parameters employed in 

developing the LSTM model in the first scenario. 

 

Table 4. Default Parameters for Developing LSTM Model 

Parameter Range Value 

units 
32 (on the first LSTM layer), 3 (on the 

second LSTM layer), 3 (on the Dense layer) 

optimizer Adam 

learning_rate 0.001 

activation softmax 

batch_size 128 

epoch 50 

Hyperparameter Tuning 

In the second scenario, the LSTM model is developed through 

hyperparameter tuning using the Bayesian Optimization 

technique, with detailed parameter ranges in Table 5. 

Subsequently, the results of hyperparameter tuning are presented 

in Table 6. 

 

Table 5. Range of Hyperparameters Used for Bayesian 

Optimization 

Parameter Range Value 

units 16 – 128 (on the first LSTM layer) 

 16 – 128 (on the second LSTM layer) 

learning_rate 0.001 - 0.1 

batch_size 32 – 128  

epoch 50 – 100 
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Table 6. Hyperparameter Tuning for Developing LSTM Model 

Parameter Range Value 

units 
57 (on the first LSTM layer), 67 (on the 

second LSTM layer) 

optimizer Adam 

learning_rate 0.0299223202049866 

activation softmax 

batch_size 91 

Comparison of The Performance of APD-BayTM with 

State Of The Arts Research In Detecting AQI 

After the successful development of APD-BayTM, the next step 

is to evaluate its performance and compare it with models from 

previous research. These models include the Support Vector 

Machine (SVM) developed by Permai et al. [9], with an accuracy 

of 98%, the Random Forest Class developed by Muljana et al. 

[10], with an accuracy of 95%, and the SVM model developed by 

Rafif et al. [11], with an accuracy of 90.56%. This comparison 

will provide valuable insights into the strengths and limitations of 

the APD-BayTM model in the field of AQI detection in Jakarta, 

contributing significantly to the advancement and understanding 

of methodologies in the literature. 

RESULTS AND DISCUSSION 

Results 

APD-BayTM with Default Parameters 

In Table 7, the results of the 5-fold cross-validation demonstrated 

the average performance of the APD-BayTM model with the 

default parameters. The average performance metrics for the 

APD-BayTM model in 5-fold cross-validation show moderate 

precision, recall, F1 Score, and accuracy. 

 

Table 7. Average Performance Metrics for APD- BayTM in 5-

Fold Cross-Validation 

Precision Recall F1 Score Accuracy 

59.66% 56.26% 55.03% 80.29% 

 
Table 8 provided detailed performance metrics from the 5-fold 

cross-validation for the APD-BayTM model. The model's 

performance varied across each fold, with precision ranging from 

50.66% to 80.79%, Recall from 38.89% to 71.49%, F1 Score 

from 38.53% to 75.18%, and Accuracy from 74.73% to 85.35%. 

Fold 2 stands out with higher precision, recall, F1 Score, and 

accuracy, suggesting the model's performance depends on the 

specific data subset. 

 

Table 8. Performance Metrics for APD- BayTM in 5-Fold Cross-

Validation 

Fold Precision Recall F1 Score Accuracy 

1 59.01% 38.89% 38.53% 77.29% 

2 80.79% 71.49% 75.18% 85.35% 

3 54.56% 54.16% 53.95% 82.78% 

4 53.28% 51.17% 50.48% 74.73% 

5 50.66% 65.57% 57.01% 81.32% 

 
Table 9 illustrates the performance in each class for every fold of 

the APD-BayTM model. The results showed varying precision, 

recall, and F1 scores across the different folds and classes. 

Notably, the model struggled in specific folds, particularly in 

distinguishing the "Unhealthy" class, where precision, recall, and 

F1 scores were consistently at 0.00%. The "Good" class exhibited 

fluctuating performance, with notable improvements in precision 

in some folds but lower recall. 

 

Table 9. Performance Metrics for APD-BayTM Across Every 

Class in 5-Fold Cross-Validation 

Fold Class Precision Recall 
F1 

Score 
Accuracy 

1 

Good 100.00% 16.67% 28.57%  

Moderate 77.04% 100.00% 87.03% 77.29% 

Unhealthy 0.00% 0.00% 0.00%  

2 

Good 73.68% 63.64% 68.29%  

Moderate 86.88% 94.58% 90.57% 85.35% 

Unhealthy 81.82% 56.25% 66.67%  

3 

Good 0.00% 0.00% 0.00%  

Moderate 83.12% 96.57% 89.34% 82.78% 

Unhealthy 80.56% 65.91% 72.50%  

4 

Good 85.71% 54.55% 66.67%  

Moderate 74.13% 98.97% 84.77% 74.73% 

Unhealthy 0.00% 0.00% 0.00%  

5 

Good 69.57% 100.00% 82.05%  

Moderate 82.40% 96.71% 88.98% 81.32% 

Unhealthy 0.00% 0.00% 0.00%  

 
The confusion matrix for the fold with the highest accuracy for 

the APD-BayTM model is presented in Figure 6. The model 

correctly identified 14 Good class instances, with eight 

misclassified as Moderate. The model achieved 192 true positives 

for the Moderate class while misclassifying five instances as 

Good and six as Unhealthy. The model correctly identified 27 

instances in the Unhealthy class, with 21 instances misclassified 

as Moderate. It indicates that the model performed well in 

predicting Moderate air quality but faced challenges in accurately 

classifying instances in the Good and Unhealthy categories 

during this specific fold 

 

 
Figure 6. Confusion Matrix of APD-BayTM on Fold 2 

 

The loss and accuracy graphs during training and validation on 

the fold with the highest accuracy for the APD-BayTM model can 

be found in Figure 7 and Figure 8, respectively. 
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Figure 7. The Loss Graph of Training and Validation for APD-

BayTM on Fold 2 

 

 
Figure 8. The Accuracy of Training and Validation for APD-

BayTM on Fold 2 

 

Table 10 summarises the overall performance of the APD-

BayTM model, specifically generated from fold 2 during cross-

validation when evaluated on the test set. In Table 11, a more 

detailed analysis was provided for each class. The "Moderate" 

class exhibits high precision, recall, and F1 Score, whereas the 

"Unhealthy" class faces challenges. 

 

Table 10. Average Performance Metrics for The APD-BayTM 

Model from Fold 2 on Test Set Data  

Precision Recall F1 Score Accuracy 

84.10% 77.00% 79.02% 87.50% 

 

Table 11. Performance Metrics for The APD-BayTM Model from 

Fold 2 on Test Set in Detail 

Class Precision Recall F1 Score Accuracy 

Good 76.92% 83.33% 80.00%  

Moderate 88.71% 95.65% 92.05% 87.50% 

Unhealthy 86.67% 52.00% 65.00%  

 
Figure 9 illustrates the confusion matrix for the APD-BayTM 

model, specifically generated from fold 2 during cross-validation 

when evaluated on the test set data. The model correctly identified 

ten Good class instances, with two misclassified as Moderate. The 

model achieved 110 true positives for the Moderate class while 

misclassifying three instances as Good and two as Unhealthy. In 

the Unhealthy class, the model correctly identified 13 instances, 

but there was a misclassification of 12 instances as Moderate. 

Overall, the model displayed commendable accuracy in 

predicting the Good and Moderate classes on the test set, with 

notable areas for improvement in minimizing false positives in 

the Unhealthy class. 

 

 
Figure 9. Confusion Matrix of APD-BayTM Model from Fold 2 

on Test Set 

APD-BayTM with Hyperparameter Tuning 

In Table 12, the results of 5-fold cross-validation demonstrate the 

average performance of the APD-BayTM model with 

hyperparameter tuning. After hyperparameter tuning, there is a 

significant improvement in average precision, recall, F1 Score, 

and accuracy compared to the default model. This improvement 

suggests the effectiveness of hyperparameter tuning in enhancing 

the model's overall performance. This improvement is attributed 

to the model's adaptability achieved through hyperparameter 

tuning, allowing it to accommodate the unique characteristics of 

different datasets [37]. 

 

Table 12. Average Performance Metrics for APD-BayTM with 

Hyperparameter Tuning in 5-Fold Cross-Validation 

Precision Recall F1 Score Accuracy 

93.29% 91.41% 91.89% 95.90% 

 

Table 13 provided detailed performance metrics from the 5-fold 

cross-validation for the APD-BayTM model with hyperparameter 

tuning, showing the metrics for each fold. The model consistently 

exhibited high performance in each fold, with precision ranging 

from 89.11% to 96.58%, recall from 86.82% to 97.50%, F1 score 

from 87.36% to 96.23%, and accuracy from 93.04% to 98.17%. 

These consistent high-performance metrics across folds indicate 

the robustness and reliability of the APD-BayTM model with 

hyperparameter tuning in predicting AQI. 

 

Table 13. Performance Metrics for APD-BayTM with 

Hyperparameter Tuning in 5-Fold Cross-Validation 

Fold Precision Recall F1 Score Accuracy 

1 94.00% 94.99% 94.48% 97.07% 

2 89.11% 86.87% 87.36% 93.04% 

3 96.58% 86.82% 90.17% 95.97% 

4 95.04% 97.50% 96.23% 98.17% 

5 91.72% 90.88% 91.24% 95.24% 

 

Table 14 details the performance in each class for every fold of 

the APD-BayTM model with hyperparameter tuning. Precision, 

recall, and F1 score were consistently higher for all classes in 

each fold, showcasing the positive impact of hyperparameter 

tuning. The "Unhealthy" class, previously challenging for the 

LSTM model, exhibited remarkable improvements in precision, 

recall, and F1 score. Overall, the hyperparameter-tuned LSTM 

model presented more robust and balanced performance across 
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all folds and classes, underscoring the importance of fine-tuning 

in optimizing model outcomes. 

 

Table 14. Performance Metrics for Apd-BayTM with 

Hyperparameter Tuning Across Every Class in 5-Fold Cross-

Validation 

Fo

ld 
Class Precision Recall 

F1 

Score 

Accurac

y 

1 

Good 89.47% 89.47% 89.47%  

Moderate 98.53% 97.57% 98.05% 97.07% 

Unhealthy 94.00% 97.92% 95.92%  

2 

Good 88.24% 68.18% 76.92%  

Moderate 96.06% 94.66% 95.35% 93.04% 

Unhealthy 83.02% 97.78% 89.80%  

3 

Good 100.00% 61.90% 76.47%  

Moderate 96.26% 98.56% 97.40% 95.97% 

Unhealthy 93.48% 100.00% 96.63%  

4 

Good 89.47% 94.44% 91.89%  

Moderate 99.50% 98.05% 98.77% 98.17% 

Unhealthy 96.15% 100.00% 98.04%  

5 

Good 79.17% 82.61% 80.85%  

Moderate 95.98% 97.45% 96.71% 95.24% 

Unhealthy 100.00% 92.59% 96.15%  

 

The confusion matrix for the fold with the highest accuracy for 

the APD-BayTM model can be observed in Figure 10. The model 

correctly identified 17 instances in the Good class, with only one 

instance misclassified as Moderate. The model achieved 201 true 

positives for the Moderate class and misclassified two instances, 

one each as Good and Unhealthy. Regarding the Unhealthy class, 

the model perfectly identified all 50 instances, with none 

misclassified, indicating robust performance in distinguishing the 

Unhealthy class. Overall, the model showcased strong predictive 

capabilities across all classes in Fold 4, with minimal 

misclassifications. 

 

 

Figure 10. Confusion Matrix of APD-BayTM with 

Hyperparameter Tuning on Fold 4 

 

The loss and accuracy graphs during training and validation for 

the fold with the highest accuracy for the APD-BayTM model 

with hyperparameter tuning can be found in Figure 11 and Figure 

12, respectively.  

 
Figure 11. The Loss Graph of Training and Validation for APD-

BayTM with Hyperparameter Tuning on Fold 4 

 

 
Figure 12. The Accuracy Graph of Training and Validation for 

APD-BayTM with Hyperparameter Tuning on Fold 4 

 

Table 15 summarises the overall performance of the APD-

BayTM model with hyperparameter tuning, specifically 

generated from fold 4 during cross-validation when evaluated on 

the test set.  

 

Table 15. Average Performance Metrics For Apd-BayTM With 

Hyperparameter Tuning From Fold 4 On Test Set Data  

Precision Recall F1 Score Accuracy 

97.44% 99.71% 98.52% 99.34% 

 
Table 16 presented a detailed analysis of the performance metrics 

for the tuned APD-BayTM model generated from fold 4 and 

evaluated on the test set data across different classes. The APD-

BayTM model with hyperparameter tuning from fold 4 exhibits 

robust and impressive performance across all classes, showcasing 

its ability to accurately predict instances in the "Good," 

"Moderate," and "Unhealthy" classes. 

 

Table 16. Performance Metrics for Apd-BayTM With 

Hyperparameter Tuning From Fold 4 on Test Set Data in Detail 

Class Precision Recall F1 Score Accuracy 

Good 92.31% 100.00% 96.00%  

Moderate 100.00% 99.13% 99.56% 99.34% 

Unhealthy 100.00% 100.00% 100.00%  

 

Figure 13 illustrates the confusion matrix for the APD-BayTM 

model with hyperparameter tuning, specifically generated from 

fold 4 during cross-validation when evaluated on the test set. The 

model accurately identified all 12 instances in the Good class, 

resulting in no misclassifications. The model achieved 114 true 
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positives for the Moderate class and misclassified one instance as 

Good. The model correctly identified all 25 instances in the 

Unhealthy class with no misclassifications. The model showcased 

strong predictive capabilities across all classes on the test set after 

hyperparameter tuning, with minimal misclassifications. 

 

 
Figure 13. Confusion Matrix of APD-BayTM Model with 

Hyperparameter Tuning from Fold 4 on Test Set 

Discussion 

Comparison of APD-BayTM Performance In Both 

Training Set and Test Set 

In developing the APD-BayTM system, we partitioned the dataset 

into two sets (a training set and a test set) with a distribution ratio 

of 90:10. The training set was used in the 5-fold cross-validation 

process. Following this, we assessed the model's performance 

across folds and identified the fold with the highest performance. 

This top-performing model was then further evaluated using the 

independent test set. 

 

Table 17 compares the average performance metrics for the APD-

BayTM model from Fold 2 in both the training and test sets, 

utilizing default parameters. On the training set, the model 

demonstrated a precision of 80.79%, recall of 71.49%, F1 score 

of 75.18%, and an accuracy of 85.35%. Upon evaluation of the 

test set, the model's performance improved, with a precision of 

84.10%, recall of 77.00%, F1 score of 79.02%, and an accuracy 

of 87.50%. This comparison indicates the model's ability to 

generalize well to unseen data, as reflected in the improved 

metrics on the test set. 

 

Table 18 extends the analysis by comparing average performance 

metrics for the APD-BayTM model from Fold 4 in both the 

training and test sets, incorporating hyperparameter tuning. On 

the training set, the hyperparameter-tuned model exhibited 

enhanced performance with a precision of 95.04%, recall of 

97.50%, F1 score of 96.23%, and an accuracy of 98.17%. The 

superior performance of the tuned model was further affirmed on 

the test set, with a precision of 97.44%, a recall of 99.71%, an F1 

score of 98.52%, and an accuracy of 99.34%. 

 

This analysis underscores the efficacy of hyperparameter tuning 

in optimizing the APD-BayTM model's performance. The 

substantial improvements in precision, recall, F1 score, and 

accuracy on both the training and test sets highlight the 

effectiveness of tuning in enhancing the model's predictive 

capabilities. The improved performance consistency across 

different evaluation sets suggests that the hyperparameter-tuned 

LSTM model is robust and capable of delivering reliable 

predictions in diverse scenarios. 

 

Table 17. Comparison of Average Performance Metrics for APD-

BayTM from Fold 2 in Both Training and Test Sets with Default 

Parameters 

Data Precision Recall F1 Score Accuracy 

Train set 80.79% 71.49% 75.18% 85.35% 

Test set 84.10% 77.00% 79.02% 87.50% 

 

Table 18. Comparison of Average Performance Metrics for APD-

BayTM from Fold 4 in Both Training and Test Sets with 

Hyperparameter Tuning 

Data Precision Recall F1 Score Accuracy 

Train set 95.04% 97.50% 96.23% 98.17% 

Test set 97.44% 99.71% 98.52% 99.34% 

Comparison of The Performance of Apd-BayTM With 

State Of The Arts Previous Research 

In Table 19, a comparative analysis is presented between the 

APD-BayTM model and models from three previous studies that 

employed different methodologies: Random Forest Classifier 

(RFC) by Muljana et al. [10], [11], Support Vector Machine 

(SVM) by Rafif et al. [11], and SVM by Permai et al. [9]. The 

evaluation metrics include precision, recall, F1 score, and 

accuracy. 

 

Table 19. Comparative analysis with previous studies 

Researc

h Work 

Metho

d 

Precisio

n 
Recall 

F1 

Score 

Accurac

y 

Muljana 

et al. 

[10] 

RFC 87.00% 
95.00

% 

90.00

% 
95.00% 

Rafif et 

al. [11] 
SVM 90.00% 

92.00

% 

90.00

% 
90.56% 

Permai 

et al. [9] 
SVM 99.00% 

98.00

% 

98.58

% 
98.00% 

Propose

d Model 
LSTM 93.29% 

91.41

% 

91.89

% 
95.90% 

 

The proposed model, APD-BayTM, is superior in precision when 

compared to RFC Muljana and SVM Rafif, but lags behind SVM 

Permai. Although it performs better in accuracy than RFC 

Muljana and SVM Rafif, it still lags behind SVM Permai. The 

recall of this proposed model falls below that of all three previous 

studies, thus demonstrating potential improvements in capturing 

all relevant examples. Although the F1 score exceeds RFC 

Muljana and SVM Rafif, it is still below SVM Permai. These 

results show that there is still room for improvement in achieving 

a balance between precision and recall. 

 

It is crucial to consider that the differences in dataset 

characteristics [38], [39] and the absence of k-fold cross-

validation in some previous studies could contribute to variations 

in the observed performance metrics. Nonetheless, the proposed 

LSTM model proves to be a competitive and balanced solution, 

showcasing its effectiveness in addressing the classification task 

compared to the referenced methodologies. 
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CONCLUSIONS 

This study successfully developed the APD-BayTM system, 

utilizing LSTM models optimized with Bayesian techniques, to 

predict the Air Quality Index (AQI) in Jakarta. The model 

demonstrated significant improvements in predictive 

performance, with precision increasing from 59.66% to 93.29%, 

recall from 56.26% to 91.41%, F1-Score from 55.03% to 91.89%, 

and accuracy from 80.29% to 95.90%. While our results are 

competitive with those of previous studies, the reliance on a 

single dataset from 2021 presents a limitation, potentially 

affecting the model's generalizability. 

 

To enhance the robustness and adaptability of the APD-BayTM 

system, future research should incorporate more extensive 

datasets spanning multiple years and regions. Additionally, 

addressing class imbalance remains a critical area for further 

development, which could lead to a more equitable and 

generalizable model. This work lays a promising foundation for 

using advanced machine learning techniques to inform public and 

governmental decision-making in air pollution management. 
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