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Valvular Heart Disease (VHD) is a significant cause of mortality worldwide. Although 

extensive research has been conducted to address this issue, practical implementation of existing 

VHD detection results in medicine still falls short of optimal performance. Recent investigations 

into machine learning for VHD detection have achieved commendable accuracy, sensitivity, 

and robustness. To address this limitation, our research proposes utilizing Selective 

Phonocardiogram Features Driven by Convolutional Neural Networks (SFD-CNN) to enhance 

VHD detection. Notably, SFD-CNN operates on phonocardiogram (PCG) signals, 

distinguishing itself from existing methods based on electrocardiogram (ECG) signals. We 

present two experimental scenarios to assess the performance of SFD-CNN: one under default 

parameter conditions and another with hyperparameter tuning. The experimental results 

demonstrate that SFD-CNN surpasses other existing models, achieving outstanding accuracy 

(96.80%), precision (93.25%), sensitivity (91.99%), specificity (98.00%), and F1-score 

(92.09%). The outstanding performance of SFD-CNN in VHD detection suggests that it holds 

great promise for practical use in various medical applications. Its potential lies in its ability to 

accurately identify and classify VHD, enabling early detection and timely intervention. SFD-

CNN could significantly improve patient outcomes and reduce the burden on healthcare 

systems. With further development and refinement, SFD-CNN has the potential to revolutionize 

the field of VHD detection and become an indispensable tool for healthcare professionals. 
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INTRODUCTION 

Valvular Heart Disease (VHD) is caused by functional disorders 

in one or more heart valves, such as the tricuspid, pulmonary, 

mitral, and aortic valves. VHD can result from congenital or birth 

defects or infections that damage the heart valves [1]. The 

presence of VHD was found to be independently associated with 

a 65% increased risk of all-cause mortality and a 72% increased 

risk of cardiovascular mortality [2]. While electrocardiogram 

(ECG) technology can identify VHD, it is expensive. Therefore, 

with the growing development of technologies such as healthcare 

applications [3], a more cost-effective approach is needed to 

detect VHD using phonocardiogram (PCG) signals. However, 

identifying heart sound abnormalities indicating VHD through 

PCG has limitations, as it requires medical experts with skill and 

experience. Furthermore, this procedure may be subject to 

inaccuracies depending on the physician's hearing health. 

Therefore, some researchers suggest using deep learning 

algorithms to interpret patient phonocardiogram signals [4], [5]. 

In addition to deep learning, other researchers also employ 

standard machine learning algorithms to identify VHDs, as 

demonstrated in [6], [7], [8], [9], [10]. Another method 

researchers use to identify VHD is ensemble learning (EL). 

Several researchers, such as in [11], [12], [13] utilized the method 

in phonocardiogram signals.  

 

Detecting valvular heart disease (VHD) based on 

phonocardiograms involves several sequential steps. 

Commencing with preprocessing, this initial and pivotal step 

aims to eliminate noise and minimize abnormal data [11], [14]. 

Following preprocessing, the feature extraction phase identifies 

and extracts crucial elements from the phonocardiogram signal 

relevant to VHD. This involves activities such as recognizing 

frequency patterns or sound waveforms. The extracted features 

are then input into a classifier, typically artificial neural networks 

[5], [15] to determine the presence of VHD by analyzing the 

signal's waveforms. 

 

Numerous studies have explored artificial intelligence-based 

VHD detection on phonocardiograms. Generally, these studies 
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[7], [8], [16], [17], [18] employ signal morphology-based feature 

extraction, such as Discrete Wavelet Transform (DWT) and Mel 

Frequency Cepstral Coefficients (MFCC), combined with classic 

machine learning algorithms like Support Vector Machine 

(SVM), K-Nearest Neighbor (KNN), and Multi-Layer Perceptron 

(MLP). Some researchers opt for different classification 

algorithms, such as deep learning (DL) [16], [19] or ensemble 

learning (EL) Sinha Roy et al. [20]. However, suboptimal results 

often occur due to incorrect feature extraction algorithms and 

classifier configurations. 

 

In studies conducted by [7], [8], [17], [18], the accuracy obtained 

was consistently less than 95%. For instance, Yaumil et al. [7] 

applied MFCC with an SVM classifier, while Bhole et al. [8] 

incorporated MFCC, Zero Crossing Rate (ZCR), peak amplitude, 

and classifiers such as KNN, Adaboost, and SVM. Li et al. [17] 

experimented with SVM and Twin Support Vector Machine 

(TWSVM) classifier configurations using features from wavelets 

and entropy. Binta et al. [18] explored the combination of features 

from MFCC and DWT with an SVM classifier. 

 

Research adopting DL [16], [19] as a classifier demonstrated high 

VHD detection accuracy, but concerns about overfitting arose. 

For instance, Alqudah et al. [16] combined an FFT-based feature 

extraction algorithm with DL classifiers like CNN, CNN-SVM, 

and CNN-KKN. Meanwhile, Karhade et al. [19] used time-

frequency-domain-based feature extraction with a CNN 

classifier. 

 

Similarly, researchers employ the EL algorithm [12], [13], [20] 

as a classifier. For instance, Sinha Roy et al. [20] encountered 

accuracy challenges, achieving only around 96%. Sinha Roy et 

al. [20] also employed feature extraction algorithms such as Root 

Mean Square (RMS), signal energy, signal power, ZCR, 

skewness, kurtosis, and DWT. For the classifier, Sinha Roy et al. 

[20] considered the use of Random Forest (RF), Decision Tree 

(DT), Gradient Boosting (GB), and Xgboost (XGB) algorithms. 

While Ghosh et al. [12] used the RF classifier with time-

frequency feature extraction, and Tuncer et al. [13] used their own 

proposed method, such as Phonocardiogram- Tent pooling (PCG-

TEP) and Iterative neighborhood component analysis  (INCA) 

used the DT classifier whose accuracy is still less than 95%. 

 

To address the challenges identified in previous studies, this 

research proposes an improved approach to detecting VHD. 

Specifically, this study considers a DWT-based feature extraction 

algorithm with a CNN classifier. In contrast to earlier studies, this 

research stands out by meticulously selecting 100 combinations 

of Daubechies wavelet basis functions and level decompositions, 

ranging from one to ten. Furthermore, the setting parameters of 

the classifier used in this research also differ from previous 

studies. Instead of following established parameters, this study 

opts for default CNN settings combined with hyperparameter 

tuning using gridSearchCV. This distinctive approach aims to 

enhance the accuracy and robustness of valvular heart disease 

(VHD) detection, setting it apart from conventional methods 

employed in the field. This study contributes significantly to heart 

sound analysis, encapsulated in the proposed Selective 

Phonocardiogram Features Driven by Convolutional Neural 

Networks (SFD-CNN). A notable aspect of this research lies in 

its emphasis on augmenting accuracy rates through implementing 

a selective features approach to Phonocardiogram (PCG) signals, 

a pioneering step many researchers in the field still need to 

explore. The study systematically compares various machine 

learning models applied to the same dataset, comprehensively 

evaluating their effectiveness. Furthermore, the research 

meticulously assesses the SFD-CNN model through two distinct 

experimental scenarios: one without tuning and another with 

hyperparameter tuning. 

RELATED WORK 

This section delves into Valvular Heart Disease (VHD) research 

that utilizes machine learning techniques. Various studies, 

including those by researchers in [5], [15], [21], [22], have 

suggested employing CNN classification and DWT feature 

extraction methods to enhance VHD detection. 

Alkhodari et al. [5] employed the CNN-BiLSTM approach along 

with DWT and CWT, achieving an accuracy of 87.31%, 

sensitivity of 92.78%, and specificity of 79.48%. Similarly, Roy 

et al. [21] utilized a CNN Residual Net model with MFCC and 

DWT, achieving notable results with 97.32% accuracy, 98.42% 

precision, 98.32% recall, and a 98.35% F1-score. Aljohani et al. 

[15] applied CNN classification with DWT and MFCC, obtaining 

a precision, recall, and F1-score of 95.5%. However, their 

reported results need to be more precise. 

 

Flores et al. [22] utilized CNN classification with DWT, MFCC, 

and CWT, reporting validation results of 99.20% accuracy, 

99.80% precision, 95.50% recall, and a 95.5% F1-score. Notably, 

they trained on 80% of the data without separate testing, thus 

needing more accuracy values for the test data. Roy et al. [21] 

used various CNN classification models, with the Xception CNN 

model achieving the highest accuracy rate of 99.43%. However, 

the drawback of their research is the extended training time 

required to achieve 99.43% accuracy. 

 

In another study, Alqudah et al. [23] applied a CNN architecture 

to the AOCTNet system, achieving accuracy and recall rates of 

98.70% and 97.10%, respectively. However, the research's 

weakness is the extended time required for PCG signal testing due 

to the image data generation method. 

Karhade et al. [19] took a unique approach by converting PCG 

signals into images using the Frequency-Domain Polynomial 

Chirplet turn (FDPCT) and STFT methods. The CNN algorithm 

yielded a classification accuracy of 99.48%. However, during 

Leave-one-out cross-validation (LOOCV) with CNN 

classification, overfitting occurred with an accuracy of 100%. 

 

Singh et al. [24] utilized the CNN algorithm with the CWT 

method and Butterworth filter to denoise PCG signals, achieving 

an accuracy of 87.96%. The potential for improvement lies in 

combining feature extraction methods and exploring additional 

deep learning techniques for more precise pattern identification. 

Arslan et al. [25] employed the Hilbert-Huang transform (HHT) 

for feature extraction, comparing machine learning techniques 

(SVM, KNN) with deep learning techniques (DNN, MLP). DNN 

achieved an accuracy level of 98.00%, but the drawback is the 

longer training time associated with the HHT method. 
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METHODS 

The methods section will contain a detailed and logical 

explanation of the process and sequence of method steps. The 

dataset was divided into training and testing datasets with a ratio 

of 90:10. The training dataset was used for five k-fold cross-

validation. This method increases the robustness and reliability of 

the training process. To enhance VHD detection, 100 CNN 

models were developed using a combination of Daubechies (DB) 

wavelet basis function and decomposition level (DL) with default 

parameters. The performance of each model is evaluated using 

the training dataset as input to the K-fold cross-validation 

process. This research uses the K-fold cross-validation method to 

find the best fold on the training dataset. In addition, two 

experimental scenarios were performed on the CNN 

classification algorithm: one using default parameters and the 

other hyperparameter tuning. This approach aims to optimize the 

algorithm's performance and improve the accuracy of VHD 

detection on the dataset. The CNN model that performed best on 

the training data was selected to predict the testing dataset. 

 

 
Figure 1. Research workflow 

As shown in Figure 1, the selected features method in this 

research is performed by taking the best Daubechies wavelet 

function and level decomposition. These results are then 

evaluated using accuracy, precision, sensitivity, specificity, and 

F1-score metrics. 

Dataset 

Yaseen et al. dataset was utilized throughout the training phase 

[6]. Table 1 shows that the collection contains 1000 heart sound 

samples, with 200 samples per type divided into five categories. 

In Figure 2, the signal of the sample data for each VHD category 

is shown; there are five different types of valve prolapse: Mitral 

Valve Prolapse (MVP), Aortic Stenosis (AS), Mitral 

Regurgitation (MR), Mitral Stenosis (MS), and Normal (N). 

Figures 5, 6, and 7 demonstrate that the spectrogram and the 

dataset reveal different patterns for each data sample. This 

highlights the unique characteristics of each entity's frequency 

spectrum and provides a deeper understanding of the data set. 

 

Table 1. Details of dataset 

Binary Label Multiclass Label Number 

of Record 

Normal Normal (N) 200 

 Aortic Stenosis (AS) 200 

Abnormal Mitral Regurgitation (MR) 200 

 Mitral Valve Prolapse (MVP) 

Mitral Stenosis (MS) 

200 

200 

Total  1000 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 2. Sample of dataset Yaseen et al.; (a) Mitral Stenosis; 

(b) Mitral Regurgitation; (c) Aortic Stenosis; (d) Mitral Valve 

Prolapse; (e) Normal 
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Preprocessing 

At this phase, the dataset heart sound data is processed before 

being given to the model. For instance, noise is removed using 

DWT, and heart sounds with irregular amplitudes are equalized 

in amplitude without impacting their quality. 

 

 
(a) 

  
(b) 

Figure 3. DWT Denoising. (a) Before denoising;  

(b) After denoising 

 

Figure 3 shows that denoising reduces the noise in the PCG signal 

and normalizes the signal within the range of -1.0 to 1.0. The 

signal remains unaltered, mainly indicating that a significant 

decrease in amplitude does not affect the signal attributes. 

Maintaining a stable amplitude facilitates signal classification 

and recognition, thereby increasing pattern recognition accuracy. 

Feature Extraction  

DWT decomposition Level can break an audio stream into 

smaller bands [11]. In heart sound analysis, selecting the 

appropriate DWT level and figuring out the breakdown at the 

optimal level are crucial [26], [27]. 

 

𝑊(𝑎, 𝑏) = ∫ 𝑓(𝑡)
1

√𝑎

∞

−∞
𝜓 ∗ {

𝑡 − 𝑏

𝑎
}  𝑑𝑡                 (1) 

 

Equation 1 shows the basis function of the wavelet used in DWT. 

Where (t) is generated from a single mother wavelet by dilation 

and translation [26]. 

 

In this study, feature extraction 1 is detailed in Figure 4. Figure 4 

shows that the chosen feature was DWT's approximation 

coefficient (cA), fed into MFCC, CQT, and STFT. 

 

 
 

Figure 4 Feature Extraction 1 Flow 

Mel-frequency cepstral coefficients (MFCC) frequently extract 

audio data into several parameters. The audio stream is first 

divided into many frames by MFCC, after which the amplitude 

spectrum is obtained using the logarithmic operation and the 

Discrete Fourier Transform (DFT). After doing some mel-scaling 

and filter bank changes, the MFCC is derived by applying a 

discrete cosine transform to the earlier findings [28]. Figure 5 

shows the result of the MFCC spectrogram. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 5. Spectrogram MFCC; (a) Mitral Regurgitation; (b) 

Aortic Stenosis; (c) Mitral Stenosis; (d) Mitral Valve Prolapse; 

(e) Normal 

 

c[n] = ∑ S[m]cos (
πn

M
(m −

1

2
))M−1

m=0 , n = 0,1,2, … , M  (2) 

 

Equation 2 shows that the spectrum's discrete cosine transform 

(DCT) is calculated to obtain the MFCC. Where M is the number 

of filter banks in total, the remaining coefficients are utilized for 

training and testing, with the first being eliminated. [28] 

 

Constant-Q transform (CQT) signal processing converts a 

collection of information into a frequency range. Particular 
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distinctions between the CQT and the Fourier transform include 

a fixed bandwidth filter and a logarithmic frequency scale. A 

practical approach can be used to compute the CQT, which is 

similar to a wavelet transform but has a higher frequency 

resolution [29]. Figure 6 shows the result of the CQT 

spectrogram. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 6. Spectrogram CQT; (a) Mitral Regurgitation; (b) Aortic 

Stenosis; (c) Mitral Stenosis; (d) Mitral Valve Prolapse; (e) 

Normal. 

𝑋𝐶𝑄𝑇(𝑘, 𝑛) = ∑ 𝑥(𝑗)𝑎𝑘
∗ (𝑗 − 𝑛 + 𝑁𝑘/2) 

𝑛+⌊𝑁𝑘/2⌋
𝑗=𝑛−⌊𝑁𝑘/2⌋     (3) 

Equation 3 shows the CQT formula. Where k is equal to 1, 2,... 

The CQT frequency bin is indicated by K, rounding to negative 

infinity is indicated by ⌊·⌋, and the complex conjugate of ak (n) is 

indicated by a ∗ k (n). A complex waveform is the foundation for 

the function ak (n) [29] 

 

Short-term Fourier transformation (STFT) The twelve pitch 

classes used in audio studies are described by STFT in terms of 

intensity, which allows for distinguishing pitch class profiles of 

audio signals from one another. The pitch class profiles of audio 

signals can be distinguished using it [30]. Figure 7 shows the 

result of the SFFT spectrogram. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 7. Spectrogram SFFT; (a) Mitral Regurgitation; (b) 

Aortic Stenosis; (c) Mitral Stenosis; (d) Mitral Valve Prolapse; 

(e) Normal. 

 

𝑋𝑆𝑇𝐹𝑇[𝑘, 𝑛] = ∑ 𝑥[𝑚 + 𝑛𝐻]𝑤[𝑚]𝑊𝑁
𝑘𝑚𝑁−1

𝑚=0 , 0 ≤ 𝑘 ≤ 𝑁 −

1,1 ≤ 𝐻 ≤ 𝑁        (4) 

 

Equation 4 shows the STFT formula. The window length is N, the 

time frame index is n, the frequency index is k, the input signal is 

x[m], and the window function is w[m]. In this case, the skip 

length is H, while the overlap length between consecutive frames 

is N − H. Moreover, (N − H)/N represents the overlap ratio 

between successive frames. The window function w[m] 

multiplies the signal x[m] at a specified time nH [31]. 

CNN Classifier 

In this research, the classification algorithm used to train the 

model from the DWT, CQT, SFFT, and MFCC datasets is CNN.  

Table 2 details the CNN architecture used in this study. The 

tuning architecture uses the L2 regularizer in the fine-tuning 

model, distinguishing it from the non-tuning model. Softmax is 

used in the output layer of this study as it offers probability 

calculations for each class. 

 

Table 2. CNN architecture layer 

Layer Activation 

Function 

Regularizers 

Conv1D(64) ReLU - 

MaxPooling1D - - 

Conv1D(32) 

Flatten 

Dense(64) 

Dense(5) 

ReLU 

- 

ReLU 

softmax 

- 

- 

L2 (Fine Tuning) 

- 
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Fine-Tuning 

In this study, an automated method using GridSearchCV is 

required for parameter refinement and to improve the overall 

efficiency of model construction. Table 3 shows the 

hyperparameter configuration used in this study. The batch sizes 

are quite different between fine-tuning and nonfine tuning; 

nonfine tuning uses 64 batch sizes, and fine-tuning uses 16. The 

SFD-CNN fine-tuning model utilizes a smaller batch size 

compared to the non-tuning model. This is because a smaller 

batch size enhances the model's ability to adapt to variable data. 

 

Table 3. Parameter used for model training 

Parameter Value 

Epoch 50 

Batch Size (Non Tuning) 64 

Batch Size (Fine Tuning)  

Optimizer 

Activation Function 

Learning Rate 

16 

Adam 

Softmax 

0.0001 

Selected Features 

The selected features are crucial for our research. To determine 

the optimal combination and level, follow these steps: First, 

calculate the average accuracy of the Daubechies wavelets and 

select the one with the highest average. Second, level 

decomposition is performed by choosing the Daubechies wavelet 

with the highest accuracy. 

Metrics Evaluation 

In this research, five metrics, accuracy, precision, sensitivity, 

specificity, and F1-score, are used to evaluate the performance of 

the proposed SFD-CNN. Equations 4 to 9 are the details of the 

metrics.  

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

(5) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(6) 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

(7) 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(8) 

𝑓1𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

(9) 

 

Where TP and TN represent the total of correctly classified 

samples up to N, divided into VHD (True Positive) and non-VHD 

(True Negative). where N sample beats represent the sum of the 

non-VHD (False Negative) and VHD (False Positive) 

misclassifications [21], [32].    

RESULTS AND DISCUSSION 

This section describes the results and discusses the performance 

of the SFD-CNN model. Figure 8 shows that the amplitude 

increases at levels 1-5, but the decomposition of the PCG signal 

is not distorted. At levels 6-10, the PCG signal becomes more 

spartan, but the signal undergoes significant structural changes 

from the original signal. Since the PCG signal decomposition 

becomes similar to all signals at levels 8-10, the accuracy at levels 

8-10 is relatively poor. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

Figure 8. Sample of DWT decomposition Level; (a) Level 1; (b) 

Level 2; (c) Level 3; (d) Level 4; (e) Level 5; (f) Level 6; (g) 

Level 7; (h) Level 8; (i) Level 9; (j) Level 10 

SFD-CNN Non-Tuning 

This section details the training and testing process using a 

combination of DB1 and DL1. The fine-tuning SFD-CNN model 

employs the architecture outlined in Table 2, with the parameters 

specified in Table 3. Tables 4-8 show the output evaluations of 

the SFD-CNN non-tuning training results.  

 

The three highest accuracies are DB1&DL1 (98%), DB1&DL2 

(98%), and DB1&DL3 (98%). Tests were conducted to compare 

the evaluations of the three combinations. 
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Table 4. DWT Decomposition level model SFD-CNN Non-

Tuning Accuracy (%) 

Lev

el 

DB

1 

DB

2 

DB

3 

DB

4 

DB

5 

DB

6 

DB

7 

DB

8 

DB

9 

DB

10 

1 98 93 75 54 52 51 44 53 51 61 

2 98 94 84 85 65 55 53 46 48 43 

3 98 93 96 94 82 86 78 73 72 80 

4 86 87 82 82 86 81 75 84 76 89 

5 88 86 81 81 84 86 84 81 84 88 

6 83 84 83 82 89 84 82 86 83 86 

7 81 81 87 84 83 82 85 83 76 79 

8 75 73 64 55 56 57 47 42 54 44 

9 62 56 41 57 44 47 33 38 22 30 

10 41 21 22 25 23 32 38 35 36 29 

 

Table 5 shows the average of each fold. It is evident that the 

DB1&DL1 combination is very slightly different from 

DB1&DL2, but the DB1&DL1 combination is still superior to the 

other combinations. 

 

Table 5. Average  each fold results of SFD-CNN Non-Tuning  

(%) 

Model   Metric

s 

  

Accura

cy 

Precisi

on 

Recall Specifi

city 

F1-

Score 

SFD-CNN 

NT 

DB1&DL1 

97.37  93.82  93.44  98.35  93.43 

SFD-CNN 

NT 

DB1&DL2 

97.37 93.35  93.44  98.35  93.42 

SFD-CNN 

NT 

DB1&DL3 

96.21  90.96  90.52  97.63  90.39 

 

This outcome is noteworthy as it reflects the consistency and high 

performance of the model during testing on that particular fold. 

The effectiveness of this combination indicates its potential 

importance in addressing challenges and variations within the 

dataset. 

 

Tables 6-8 show the performance rates for each class of SFD-

CNN non-tuning with different combinations. Table 6 shows the 

combination of DB1&DL1, using Fold 2, due to its impressive 

average accuracy of 98.66%. Table 7 shows that the combination 

of DB1&DL2 also achieves a remarkable accuracy of 98.66% in 

fold 2, consistent with the result obtained with DB1&DL1. 

However, there are differences when examining the class-specific 

accuracies in Fold 2. Meanwhile, Table 8 shows that the 

combination of DB1&DL3 achieves an accuracy of 96.08 in fold 

2.  

 

Although DB1&DL1 performs well in training accuracy across 

the k-fold, it is essential to understand the subtle differences 

between combinations and folds for optimal use in real-world 

scenarios. 

 

Table 6. Performance rate for each class SFD-CNN Non-Tuning 

DB1&DL1 (%) 

Fold    Metrics   

  Accuracy Precision Recall Specificity F1-

Score 

1 AS 

MR 

MS 

MVP 

N 

96.66 

95.55 

93.33 

97.22 

97.22 

89.47 

91.17 

77.27 

100 

96.96 

94.44 

86.11 

94.44 

86.11 

88.88 

97.22 

97.91 

93.05 

100 

99.30 

91.89 

88.57 

85.00 

92.53 

92.75 

2 AS 

MR 

MS 

MVP 

N 

99.44 

97.22 

98.88 

97.77 

100 

100 

97.29 

91.89 

94.73 

100 

100 

94.44 

100 

88.88 

100 

100 

99.30 

97.91 

98.61 

100 

98.63 

93.15 

97.29 

94.11 

100 

3 AS 

MR 

MS 

MVP 

N 

97.77 

96.11 

97.22 

98.88 

100 

94.44 

93.93 

89.74 

97.22 

100 

100 

94.44 

86.11 

97.22 

100 

100 

98.61 

97.22 

99.30 

100 

94.44 

89.85 

93.33 

97.22 

100 

4 AS 

MR 

MS 

MVP 

N 

97.22 

93.88 

94.44 

96.11 

99.44 

91.89 

87.87 

80.95 

96.77 

97.29 

94.44 

80.55 

94.44 

83.33 

100 

100 

97.91 

97.22 

94.44 

99.30 

93.15 

84.05 

87.17 

89.55 

98.63 

5 AS 

MR 

MS 

MVP 

N 

99.44 

97.22 

98.88 

96.11 

98.33 

97.29 

87.80 

97.22 

100 

94.59 

94.59 

100 

97.22 

80.55 

97.22 

99.30 

96.52 

99.30 

100 

98.61 

98.63 

93.50 

97.22 

89.23 

95.89 

 

Table 7. Performance rate for each class SFD-CNN Non-Tuning 

DB1&DL2 (%) 

Fold    Metrics   

  Accuracy Precision Recall Specificity F1-

Score 

1 AS 

MR 

MS 

MVP 

N 

97.77 

96.66 

94.44 

96.66 

97.77 

94.44 

94.11 

78.26 

96.87 

100 

94.44 

88.88 

100 

86.11 

88.88 

98.61 

98.61 

93.05 

99.30 

100 

94.44 

91.42 

87.80 

91.17 

94.11 

2 AS 

MR 

MS 

MVP 

N 

98.88 

99.44 

97.77 

97.77 

99.44 

9722 

100 

9000 

9705 

100 

9722 

9722 

100 

9166 

9722 

99.30 

100 

97.22 

99.30 

100 

97.22 

98.59 

94.73 

94.28 

98.59 

3 AS 

MR 

MS 

MVP 

N 

96.66 

93.88 

95.55 

97.22 

100 

89.47 

85.71 

88.88 

94.28 

100 

97.22 

96.52 

97.22 

98.61 

100 

97.22 

96.52 

97.22 

98.61 

100 

91.89 

84.50 

88.88 

92.95 

100 

4 AS 

MR 

MS 

MVP 

N 

96.11 

94.44 

96.66 

95.00 

100 

89.18 

90.62 

85.71 

90.90 

100 

91.66 

80.55 

100 

83.33 

100 

97.22 

97.91 

95.83 

97.91 

100 

90.41 

85.29 

92.30 

86.95 

100 

5 AS 

MR 

MS 

MVP 

N 

97.77 

100 

98.88 

96.66 

98.88 

92.10 

100 

94.73 

100 

94.73 

97.22 

100 

100 

83.33 

100 

97.91 

100 

98.61 

100 

98.61 

94.59 

100 

97.29 

90.90 

97.29 
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Table 8. Performance rate for each class SFD-CNN Non-Tuning 

DB1&DL3 (%) 

Fold    Metrics   

  Accuracy Precision Recall Specificity F1-

Score 

1 AS 

MR 

MS 

MVP 

N 

97.22 

96.66 

93.33 

94.44 

95.00 

94.28 

94.11 

78.57 

90.62 

86.48 

91.66 

88.88 

91.66 

80.55 

88.88 

88.88 

98.61 

93.75 

97.91 

96.52 

92.95 

91.42 

84.61 

85.29 

87.67 

2 AS 

MR 

MS 

MVP 

N 

87.67 

98.88 

98.33 

97.22 

98.33 

97.22 

92.30 

94.59 

100 

94.59 

97.22 

100 

97.22 

86.11 

97.22 

99.30 

97.91 

98.61 

100 

98.61 

97.22 

96.00 

95.89 

92.53 

95.89 

3 AS 

MR 

MS 

MVP 

N 

96.66 

95.55 

96.11 

96.66 

98.33 

91.66 

88.88 

89.18 

96.87 

92.30 

91.66 

88.88 

91.66 

86.11 

100 

99.30 

97.91 

97.22 

99.30 

97.91 

91.66 

88.88 

90.41 

91.17 

96.00 

4 AS 

MR 

MS 

MVP 

N 

95.55 

92.77 

95.00 

92.77 

98.33 

85.00 

84.84 

84.61 

89.65 

92.30 

94.44 

77.77 

91.66 

72.22 

100 

97.91 

95.83 
96.52 

95.83 

97.91 

89.47 

81.15 

88.00 
80.00 

96.00 

5 AS 

MR 

MS 

MVP 

N 

97.22 

96.11 

98.33 

92.77 

95.55 

91.89 

83.72 

97.14 

100 

83.33 

94.44 

100 

94.44 

63.88 

97.22 

97.91 

95.13 

99.30 

100 

95.13 

93.15 

91.13 

95.77 

77.96 

89.74 

 

The loss graph in Figure 9 shows a sharp decline from epoch 0 to 

5, followed by a gradual decrease to below 0.25% at epoch 10, 

indicating model stability with no signs of overfitting.  

 

 
(a) 

 
(b) 

Figure 9. Training and validation SFD-CNN Non-Tuning 

DB1&DL1 (Fold 2); (a) Accuracy; (b) Loss 

 

Figure 10, which represents the DB1&DL2 combination, closely 

resembles Figure 9. However, Figure 11, which depicts the 

DB1&DL3 combination, shows a less stable trend than Figures 9 

and 10, although there are no indications of overfitting. 

 

 
(a) 

 
(b) 

Figure 10. Training and validation SFD-CNN Non-Tuning  

DB1&DL2 (Fold 2); (a) Accuracy; (b) Loss 

 

 
(a) 

 
(b) 

Figure 11. Training and validation SFD-CNN Non-Tuning  

DB1&DL3 (Fold 2); (a) Accuracy; (b) Loss 

 

Table 9 shows the performance evaluation results of the SFD-

CNN non-tuning model on the third-highest decomposition level 

combination during the testing phase. The highest test result 

obtained is DB1&DL1, which is 94.80%. Then, the DB1&DL1 

combination result is selected for SFD-CNN non-tuning. 

 

Table 9. SFD-CNN Non-Tuning Testing Result (%) 

Model Metrics 

Accu

racy 

Precisi

on 

Recall Specifi

city 

F1-

Score 

SFD-CNN 

NT 

DB1&DL1 

96.4

0 

91.38 91.00 97.74 90.91 

SFD-CNN 

NT 

DB1&DL3 

96.4

0 

91.66 90.99 97.75 90.86 

SFD-CNN 

NT 

DB1&DL2 

92.8

0 

86.13 82.00 95.50 81.82 
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Figures 12-14 show the confusion matrix of the SFD-CNN non-

tuning model on the third-highest decomposition level 

combination. 

 
Figure 12. Confusion Matrix SFD-CNN Non-Tuning  

DB1&DL1 Testing (Fold 2) 

 

 
Figure 13. Confusion Matrix SFD-CNN Non-Tuning  

DB1&DL2 Testing (Fold 2) 

 
Figure 14. Confusion Matrix SFD-CNN Non-Tuning  

DB1&DL3 Testing (Fold 2) 

SFD-CNN Fine-Tuning 

This section details the training and testing process using a 

combination of DB1 and DL1. The fine-tuning SFD-CNN model 

employs the architecture outlined in Table 2, with the parameters 

specified in Table 3. Tables 10-15 below show the output 

evaluations of the SFD-CNN fine-tuning training results.  

 

Table 10. DWT Decomposition level model SFD-CNN Fine-

Tuning Accuracy (%) 

Lev

el 

DB

1 

DB

2 

DB

3 

DB

4 

DB

5 

DB

6 

DB

7 

DB

8 

DB

9 

DB

10 

1 99 93 73 63 65 61 53 51 58 58 

2 99 91 91 86 76 63 65 42 55 46 

3 99 87 93 92 88 83 81 85 82 79 

4 92 88 83 89 83 86 89 90 83 84 

5 90 85 94 82 90 83 81 82 87 89 

6 88 83 91 88 86 87 85 87 83 88 

7 85 76 89 9 88 91 89 85 84 89 

8 83 72 65 67 59 51 49 52 48 50 

9 74 67 45 49 42 49 43 48 41 39 

10 58 43 35 32 36 38 32 34 38 31 

 

Table 11 shows the average of each fold. It is evident that the 

combination of all three has comparable accuracy, but the 

DB1&DL1 combination proves to be superior in the SFD-CNN 

fine-tuning model. 

 

Table 11. Average each fold results of SFD-CNN Fine-Tuning 

(%) 

Model   Metric

s 

  

 Accura

cy 

Precisi

on 

Recall Specifi

city 

F1-

Score 

SFD-CNN 

FT 

DB1&DL1 

98.70  96.91  96.77  99.18  96.76 

SFD-CNN 

FT 

DB1&DL2 

98.53 96.54 96.32 99.08 96.30 

SFD-CNN 

FT 

DB1&DL3 

98.44 96.19 96.10 99.02 96.08 

 

Tables 12-14 present the classification rates for individual classes 

of the SFD-CNN fine-tuning model with the top three accuracy 

combinations. Specifically, Table 12 shows the results for the 

DB1&DL1 combination using fold 2, which has the highest 

accuracy among the folds at 99.44%. Similarly, Tables 13 and 14 

present the results of the fine-tuning process using fold 2, 

highlighting its consistently high accuracy, recorded at 98.98% 

and 96.92%, respectively.  

 

These findings demonstrate the effectiveness of fold 2 to achieve 

superior classification accuracy in the SFD-CNN fine-tuning 

procedure. 
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Table 12. Performance rate for each class SFD-CNN Fine-Tuning 

DB1&DL1 (%) 
Fold   Metrics   

  Accuracy Precision Recall Specificity F1-

Score 

1 AS 

MR 

MS 

MVP 

N 

97.22 

97.77 

99.44 

97.77 

100 

91.89 

94.44 

97.29 

97.05 

100 

100 

94.44 

100 

91.66 

100 

100 

97.91 

98.61 

99.30 

100 

93.15 

94.44 

98.63 

94.28 

100 

2 AS 

MR 

MS 

MVP 

N 

98.88 

100 

99.44 

98.88 

100 

100 

97.29 

100 

94.73 

100 

100 

97.22 

100 

94.44 

100 

100 

99.30 

100 

98.61 

100 

98.63 

98.59 

97.29 

97.14 

100 

3 AS 

MR 

MS 

MVP 

N 

98.33 

97.77 

98.33 

97.77 

100 

97.14 

94.44 

97.14 

92.10 

100 

92.10 

100 

94.44 

97.22 

100 

99.30 

98.61 

99.30 

97.91 

100 

95.77 

94.44 

95.77 

94.59 

100 

4 AS 

MR 

MS 

MVP 

N 

99.44 

97.77 

98.88 

98.33 

100 

98.33 

100 

94.73 

92.30 

100 

97.22 

88.88 

100 

100 

100 

100 

100 

98.61 

97.91 

100 

98.59 

94.11 

97.29 

96.00 

100 

5 AS 

MR 

MS 

MVP 

N 

97.22 

100 

99.44 

96.66 

98.88 

87.80 

100 

100 

100 

94.73 

 

100 

100 

97.22 

83.33 

100 

96.52 

100 

100 

100 

98.61 

93.50 

100 

98.59 

90.90 

97.29 

 

Table 13. Performance rate for each class SFD-CNN Fine-Tuning 

DB1&DL2 (%) 

Fold    Metrics   

  Accuracy Precision Recall Specificity F1-

Score 

1 AS 

MR 

MS 

MVP 

N 

97.77 

95.55 

98.33 

97.22 

98.88 

90.00 

88.88 

97.14 

94.28 

100 

100 

88.88 

94.44 

91.66 

94.44 

97.22 

97.22 

99.30 

98.61 

100 

94.73 

88.88 

95.77 

92.95 

97.14 

2 AS 

MR 

MS 

MVP 

N 

97.14 

99.44 

98.88 

99.44 

100 

97.29 

100 

94.73 

100 

100 

100 

94.44 

100 

97.22 

100 

99.30 

100 

98.61 

100 

100 

98.63 

97.14 

97.29 

98.59 

100 

3 AS 

MR 

MS 

MVP 

N 

98.88 

96.11 

96.66 

98.88 

99.44 

97.22 

100 

87.50 

94.73 

97.29 

97.22 

80.55 

97.22 

100 

100 

99.30 

100 

96.52 

98.61 

99.30 

97.22 

89.23 

92.10 

97.29 

98.63 

4 AS 

MR 

MS 

MVP 

N 

99.44 

97.22 

97.22 

99.44 

99.44 

97.29 

100 

90.00 

100 

97.29 

100 

86.11 

100 

972.2 

100 

99.30 

100 

97.22 

100 

99.30 

98.63 

92.53 

94.73 

98.59 

98.63 

5 AS 

MR 

MS 

MVP 

N 

97.77 

100 

100 

97.77 

100 

90.00 

100 

100 

100 

100 

100 

100 

100 

88.88 

100 

97.22 

100 

100 

100 

100 

94.73 

100 

100 

94.11 

100 

 

Table 14. Performance rate for each class SFD-CNN Fine-Tuning 

DB1&DL3 (%) 

Fold    Metrics   

  Accuracy Precision Recall Specificity F1-

Score 

1 AS 

MR 

MS 

MVP 

N 

98.33 

96.11 

95.55 

97.22 

98.33 

94.59 

85.36 

91.17 

96.96 

97.14 

97.14 

97.22 

86.11 

88.88 

94.44 

94.44 

98.61 

95.83 

97.91 

99.30 

95.89 

90.90 

88.57 

92.75 

95.77 

2 AS 

MR 

MS 

MVP 

N 

92.75 

95.77 

98.33 

99.44 

98.33 

94.59 

97.29 

100 

97.14 

100 

97.22 

100 

97.22 

94.44 

100 

98.61 

99.30 

100 

99.30 

100 

95.89 

98.63 

98.59 

95.77 

100 

3 AS 

MR 

MS 

MVP 

N 

95.77 

100 

97.77 

98.33 

99.44 

94.44 

94.59 

97.14 

100 

97.29 

94.44 

97.22 

94.44 

97.22 

100 

100 

98.61 

99.30 

100 

99.30 

94.44 

95.89 

95.77 

98.59 

98.63 

4 AS 

MR 

MS 

MVP 

N 

99.44 

96.11 

99.44 

97.22 

98.88 

97.29 

91.42 

97.29 

96.96 

94.73 

100  

88.88  

100  

88.88  

100 

100 

99.30 

97.91 

99.30 

98.61 

98.63 

90.14 

98.63 

92.75 

97.29 

5 AS 

MR 

MS 

MVP 

N 

98.33 

99.44 

100 

97.77 

100 

97.77 

100 

92.30 

97.29 

100 

100 

100 

100 

88.88 

100 

97.91 

99.30 

100 

100 

100 

96.00 

98.63 

100 

94.11 

100 

 

Figures 15-17 show the performance of the SFD-CNN fine-

tuning model on the training accuracy and validation loss graphs.  

In all three combinations, there is a significant improvement in 

the training data at epoch 5, which reaches the 80% to 90% range. 

The increase continues slowly, and by the end of epoch 40 to 50, 

shows very little growth. On the loss graph, all three 

combinations exhibit a decrease in loss at epoch 5. By epoch 50, 

the loss value has dropped below 0.25%, indicating that all three 

combinations have stable models. 

 

 
(a) 

 
(b) 

Figure 15. Training and validation SFD-CNN Fine-Tuning  

DB1&DL1 (Fold 2); (a) Accuracy; (b) Loss 
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(a) 

 
(b) 

Figure 16. Training and validation SFD-CNN Fine-Tuning  

DB1&DL2 (Fold 2); (a) Accuracy; (b) Loss 

 

 
(a) 

 
(b) 

Figure 17. Training and validation SFD-CNN Fine-Tuning  

DB1&DL3 (Fold 2); (a) Accuracy; (b) Loss 
 

Table 15 shows the results for the third highest decomposition 

level combination during the test phase in the performance 

evaluation of the SFD-CNN fine-tuning model.  

 

The DB1&DL1 combination exhibits the highest performance, 

with a test result of 96.80%. Additionally, the DB1&DL2 

combination performs similarly to the DN1&DL1 combination, 

with only a 0.80% difference.  

 

The combination of DB1&DL3 achieved the lowest result at 

95.20%, which was only 1% lower than the other combinations. 

As a result of its proven proficiency and robustness, this 

combination was selected for further refinement in the SFD-CNN 

fine-tuning process. 

Table 15. SFD-CNN Fine-Tuning Testing Results (%) 

Model Metrics 

Accura

cy 

Precisi

on 

Recall Specifi

city 

F1-

Score 

SFD-CNN 

FT 

DB1&DL1 

96.80 93.25 91.99 98.00 92.09 

SFD-CNN 

FT 

DB1&DL2 

96.00 90.46 90.00 97.50 89.86 

SFD-CNN 

FT 

DB1&DL3 

95.20 90.33 88.00 97.00 88.31 

 

Figures 18-20 show the confusion matrix of the SFD-CNN fine-

tuning model on the third-highest decomposition level 

combination.  

 

The best prediction is shown in Figure 18, namely the DB1&DL1 

combination, while the DB1&DL2 combination has a prediction 

similar to DB1&DL1 but with a few incorrect predictions. The 

lowest prediction is in the DB1&DL3 combination, which is 

inferior to the other combinations. 

 

 
Figure 18. Confusion Matrix SFD-CNN Fine-Tuning 

 DB1&DL1 Testing (Fold 2) 

 
Figure 19. Confusion Matrix SFD-CNN Fine-Tuning 

 DB1&DL2 Testing (Fold 2) 
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Figure 20. Confusion Matrix SFD-CNN Fine-Tuning 

 DB1&DL3 Testing (Fold 2) 

Comparison with SFD-CNN Non-Tuning and Fine-

Tuning Model 

Table 16 shows the comparison results between the SFD-CNN 

Non-Tuning and Fine-Tuning tests. In this table, it can be seen 

that the SFD-CNN Fine-Tuning achieves high scores and 

outperforms the SFD-CNN Non-Tuning. Therefore, based on the 

evaluated criteria, the SFD-CNN Fine-Tuning model can be used 

as a reference for the best model.  

 

Table 16. Comparison SFD-CNN Non-Tuning and Fine-Tuning 

testing result (%) 

Model Metrics 

Accura

cy 

Precisi

on 

Recall Specifi

city 

F1-

Score 

SFD-CNN 

FT 

96.80 93.25 91.99 98.00 92.09 

SFD-CNN 

NT 

96.40 91.38 91.00 97.74 90.91 

 

Discussion 

This subsection discusses the results obtained with our proposed 

model. In this research, the SFD-CNN fine-tuning model utilized 

fold two because it has the highest average accuracy compared to 

other folds, achieving 96.80%. Similarly, the SFD-CNN non-

tuning model utilized Fold 2 with the highest average of 96.40% 

 

This study has limitations, including comparing our proposed 

model with classical machine learning models and the limitations 

of the dataset used. Furthermore, there is no direct application 

implementation or a simple prototype that can provide a better 

understanding of the practical applicability of the proposed model 

in a real-world environment. 

 

Table 6 shows the results of 100% accuracy on specific classes, 

where Nti et al. [33] explained that the use of k-fold with small 

data can increase the complexity of training, which causes the 

relevance of the features used to predict the class and the model 

can quickly learn the relationship between features and class 

labels. 

 

Tables 4 and 10 show the accuracy of SFD-CNN fine-tuning and 

non-tuning prediction for all Daubechies (DB) combinations and 

decomposition levels (DL). For the selected features DB1 and 

DL1, we selected DB1 because it has the highest average 

accuracy and the selected DL1. After all, it has the highest 

accuracy. Accuracy combined DL1 tends to be higher because the 

signal data is still like the original; Chowdhury et al. [34] explain 

that at each level of decomposition, the signal will be divided into 

low and high-frequency bands, and the time resolution will be 

half. This is what makes DL2 and DL3 signals have low accuracy 

results. 

 

To prove that the increasing level of decomposition affects the 

accuracy degradation, in Table 12, we compare the three best 

combinations of DB and DL from each non-tuning and fine-

tuning model. However, DL2 and DL3 have lower accuracy than 

DL1. 

 

In Table 10, the result of SFD-CNN fine-tuning DB1&DL1 and 

DB1&DL2 is the same, but the accuracy result in Table 16 is 

different because in DL2, the signal has been decomposed, but 

not so much; therefore, the accuracy difference is only 0.20%. 

 

The best-selected feature results are DB1&DL1 SFD-CNN non-

tuning and DB1&DL1 SFD-CNN fine-tuning. Table 16 compares 

the testing results of the two proposed models. SDF-CNN fine-

tuning achieved the highest accuracy at 96.80%. SDF-CNN fine-

tuning uses different parameters than non-tuning, including 

differentiation of batch size. According to Yu et al. [27], tuning 

the batch size determines the convergence speed on accuracy 

improvement.  

Comparison with State-of-the-art Related Work 

Table 17. Compare existing model approaches 

Author Model Method Accu

racy 

F1-

Score 

Khade et al. [8] KNN MFCC, ZCR, 

Peak 

amplitude 

90.47 77.33 

Khade et al. [8] AdaBo

ost 

MFCC, ZCR, 

Peak 

amplitude 

92.85 84.55 

Ghosh et al. 

[12] 

RF Time-

frequency 

features 

93.91 - 

Khade et al. [8] SVM MFCC, ZCR, 

Peak 

amplitude 

94.07 85.16 

Tuncer et al. 

[13] 

DT PCG-TEP, 

INCA 

95.10 95.14 

Proposed 

Research 

SFD-

CNN 

Fine-

Tuning  

Selected 

DWT, 

MFCC, 

CQT, STFT 

96.80 92.09 

 

Table 17 in this subsection compares our proposed SFD-CNN 

model with the state-of-the-art models proposed by other 

researchers. Our research shows that our model evaluation is 

superior to theirs. In this comparison, the model presented in 

Table 17 uses the same dataset as our proposed model. Our model 
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outperforms other researchers' classic machine learning models 

and EL algorithms. 

  

According to Taye M. [35], CNN models are considered superior 

due to their greater complexity compared to classic machine 

learning. Additionally, CNN models are superior due to their 

greater complexity than classic machine learning. Additionally, 

CNN models can self-correct, while classical machine learning 

still requires human intervention to correct its mistakes. 

Therefore, our proposed model contributes significantly not only 

to this research but also to related industries. The results of this 

study offer valuable insights to the research community and open 

up opportunities for further development in this area. 

CONCLUSIONS 

This study proposes an SFD-CNN model for identifying Valve 

Heart Disease (VHD) types using PCG signals, including AS, 

MR, MVP, MR, and N cases. The SFD-CNN model fine-tuning 

at fold 2 showed the highest accuracy for VHD detection, 

resulting in an accuracy of 96.80%, precision of 93.25%, 

sensitivity of 91.99%, specificity of 98.00%, and F1-score of 

92.09%. Our model outperformed the classic machine learning 

model and EL algorithm. As a suggestion for future research, 

consider using alternative datasets or incorporating data 

augmentation from similar sources. This can enhance the 

diversity of training data, optimize model performance, and 

expand its application to patients in a medical setting. 

REFERENCES 

[1] G. Santangelo et al., "The Global Burden of Valvular 

Heart Disease: From Clinical Epidemiology to 

Management," Journal of Clinical Medicine, vol. 12, no. 

6. Multidisciplinary Digital Publishing Institute (MDPI), 

March 01, 2023. doi: 10.3390/jcm12062178. 
[2] M. Tung, G. Nah, J. Tang, G. Marcus, and F. N. Delling, 

"Valvular disease burden in the modern era of 

percutaneous and surgical interventions: The UK 

Biobank," Open Heart, vol. 9, no. 2, Sep. 2022, doi: 

10.1136/openhrt-2022-002039. 

[3] Y. Coulibaly, A. A. I. Al-Kilany, M. S. A. Latiff, G. 

Rouskas, S. Mandala, and M. A. Razzaque, "Secure 

burst control packet scheme for Optical Burst Switching 

networks," in 2015 IEEE International Broadband and 

Photonics Conference (IBP), IEEE, 2015, pp. 86–91. 

doi: 10.1109/IBP.2015.7230771. 

[4] G. D. Clifford et al., "Classification of 

Normal/Abnormal Heart Sound Recordings: the 

PhysioNet/Computing in Cardiology Challenge 2016." 

[5] M. Alkhodari and L. Fraiwan, "Convolutional and 

recurrent neural networks for the detection of valvular 

heart diseases in phonocardiogram recordings," Comput 

Methods Programs Biomed, vol. 200, p. 105940, Mar. 

2021, doi: 10.1016/J.CMPB.2021.105940. 

[6] Yaseen, G. Y. Son, and S. Kwon, “Classification of 

Heart Sound Signal Using Multiple Features,” Applied 

Sciences 2018, Vol. 8, Page 2344, vol. 8, no. 12, p. 2344, 

Nov. 2018, doi: 10.3390/APP8122344. 

[7] M. Yaumil, I. #1, S. Mandala, and M. Pramudyo, "Study 

of Denoising Method to Detect  Valvular Heart Disease 

Using  Phonocardiogram (PCG)," Indonesia Journal on 

Computing (Indo-JC), vol. 7, no. 1, pp. 31–38, Apr. 

2022, doi: 10.34818/INDOJC.2022.7.1.610. 

[8] P. J. Khade, P. Mane, S. Mahore, and K. Bhole, 

"Machine Learning Approach for Prediction of Aortic 

and Mitral Regurgitation based on Phonocardiogram 

Signal," in 2021 12th International Conference on 

Computing Communication and Networking 

Technologies, ICCCNT 2021, Institute of Electrical and 

Electronics Engineers Inc., 2021. doi: 

10.1109/ICCCNT51525.2021.9579971. 

[9] M. Farhan, S. Mandala, and M. Pramudyo, "Detecting 

Heart Valve Disease Using Support Vector Machine 

Algorithm based on Phonocardiogram Signal," in 2021 

International Conference on Intelligent Cybernetics 

Technology & Applications (ICICyTA), 2021, pp. 128–

132. doi: 10.1109/ICICyTA53712.2021.9689142. 

[10] W. R. Putra, S. Mandala, and M. Pramudyo, "Study of 

Feature Extraction Methods to Detect Valvular Heart 

Disease (VHD) Using a Phonocardiogram," in 2021 

International Conference on Intelligent Cybernetics 

Technology & Applications (ICICyTA), 2021, pp. 122–

127. doi: 10.1109/ICICyTA53712.2021.9689119. 

[11] V. Arora, R. Leekha, R. Singh, and I. Chana, "Heart 

sound classification using machine learning and 

phonocardiogram," 

https://doi.org/10.1142/S0217984919503214, vol. 33, 

no. 26, Sep. 2019, doi: 10.1142/S0217984919503214. 

[12] S. K. Ghosh, R. K. Tripathy, R. N. Ponnalagu, and R. B. 

Pachori, "Automated Detection of Heart Valve 

Disorders from the PCG Signal Using Time-Frequency 

Magnitude and Phase Features," IEEE Sens Lett, vol. 3, 

no. 12, Dec. 2019, doi: 10.1109/LSENS.2019.2949170. 

[13] T. Tuncer, S. Dogan, R. S. Tan, and U. R. Acharya, 

"Application of Petersen graph pattern technique for 

automated detection of heart valve diseases with PCG 

signals," Inf Sci (N Y), vol. 565, pp. 91–104, Jul. 2021, 

doi: 10.1016/j.ins.2021.01.088. 

[14] S. Mandala, Y. N. Fuadah, M. Arzaki, and F. E. 

Pambudi, Performance Analysis of Wavelet-Based 

Denoising Techniques for ECG Signal. 2017. 

[15] R. I. Aljohani, H. A. Hosni Mahmoud, A. Hafez, and M. 

Bayoumi, "A Novel Deep Learning CNN for Heart 

Valve Disease Classification Using Valve Sound 

Detection," Electronics 2023, Vol. 12, Page 846, vol. 12, 

no. 4, p. 846, Feb. 2023, doi: 

10.3390/ELECTRONICS12040846. 

[16] A. M. Alqudah, S. Qazan, and A. Alqudah, "Detection 

of Valvular Heart Diseases Using Fourier Transform and 

Simple CNN Model," Article in IAENG International 

Journal of Computer Science, Accessed: April 28, 2023. 

[Online]. Available: 

https://www.researchgate.net/publication/365993591 

[17] J. Li, L. Ke, and Q. Du, "Classification of heart sounds 

based on thewavelet fractal and twin support vector 

machine," Entropy, vol. 21, no. 5, May 2019, doi: 

10.3390/e21050472. 

[18] N. Binta, I. Sabur, K. Nuhash, and T. Hasan, "Hilbert-

Envelope Features for Cardiac Disease Classification 



MUHAMMAD RAFLI RAMADHAN / JURNAL NASIONAL TEKNIK ELEKTRO - VOL. 13 NO. 1 (MARCH 2024) 

 

https://doi.org/10.25077/jnte.v13n1.1184.2024   33 

from Noisy Phonocardiograms", doi: 

10.1101/2020.11.17.20233064. 

[19] J. Karhade, S. Dash, S. K. Ghosh, D. K. Dash, and R. K. 

Tripathy, "Time-Frequency-Domain Deep Learning 

Framework for the Automated Detection of Heart Valve 

Disorders Using PCG Signals," IEEE Trans Instrum 

Meas, vol. 71, 2022, doi: 10.1109/TIM.2022.3163156. 

[20] T. Sinha Roy, J. K. Roy, and N. Mandal, "Conv-Random 

Forest-Based IoT: A Deep Learning Model Based on 

CNN and Random Forest for Classification and Analysis 

of Valvular Heart Diseases," IEEE Open Journal of 

Instrumentation and Measurement, vol. 2, pp. 1–17, 

Sep. 2023, doi: 10.1109/ojim.2023.3320765. 

[21] T. S. Roy, J. K. Roy, and N. Mandal, "Classifier 

identification using deep learning and machine learning 

algorithms for the detection of valvular heart diseases," 

Biomedical Engineering Advances, vol. 3, p. 100035, 

Jun. 2022, doi: 10.1016/J.BEA.2022.100035. 

[22] S. I. Flores-Alonso, B. Tovar-Corona, and R. Luna-

García, "Deep Learning Algorithm for Heart Valve 

Diseases Assisted Diagnosis," Applied Sciences 2022, 

Vol. 12, Page 3780, vol. 12, no. 8, p. 3780, Apr. 2022, 

doi: 10.3390/APP12083780. 

[23] A. M. Alqudah, H. Alquran, and I. A. Qasmieh, 

"Classification of heart sound short records using 

bispectrum analysis approach images and deep 

learning," Network Modeling Analysis in Health 

Informatics and Bioinformatics, vol. 9, no. 1, Dec. 2020, 

doi: 10.1007/s13721-020-00272-5. 

[24] S. A. Singh, T. G. Meitei, and S. Majumder, "Short PCG 

classification based on deep learning," in Deep Learning 

Techniques for Biomedical and Health Informatics, 

Elsevier Inc., 2020, pp. 141–164. doi: 10.1016/B978-0-

12-819061-6.00006-9. 

[25] Ö. Arslan and M. Karhan, "Effect of Hilbert-Huang 

transform on classification of PCG signals using 

machine learning," Journal of King Saud University - 

Computer and Information Sciences, vol. 34, no. 10, pp. 

9915–9925, Nov. 2022, doi: 

10.1016/J.JKSUCI.2021.12.019. 

[26] Amelia F and Gunawan D, "DWT-MFCC Method for 

Speaker Recognition System with Noise," in 2019 7th 

International Conference on Smart Computing & 

Communications (ICSCC)., 2019. doi: 

10.1109/ICSCC.2019.8843660. 

[27] S. Mandala, Y. N. Fuadah, M. Arzaki, and F. E. 

Pambudi, Performance Analysis of Wavelet-Based 

Denoising Techniques for ECG Signal. 2017. 

[28] J. Leo, C. Loong, K. S. Subari, M. K. Abdullah, N. 

Ahmad, and R. Besar, "Comparison of MFCC and 

Cepstral Coefficients as a Feature Set for PCG Biometric 

Systems." 

[29] P. Singh, S. Waldekar, M. Sahidullah, G. Saha, and S. 

Goutam, "Analysis of constant-Q filterbank based 

representations for speech emotion recognition Analysis 

of constant-Q filterbank based representations for 

speech emotion recognition Analysis of constant-Q 

filterbank based representations for speech emotion 

recognition," Digit Signal Process, vol. 130, p. 103712, 

2022, doi: 10.1016/j.dsp.2022.103712ï. 

[30] J. K. Das, A. Ghosh, A. K. Pal, S. Dutta, and A. 

Chakrabarty, "Urban Sound Classification Using 

Convolutional Neural Network and Long Short Term 

Memory Based on Multiple Features," 4th International 

Conference on Intelligent Computing in Data Sciences, 

ICDS 2020, Oct. 2020, doi: 

10.1109/ICDS50568.2020.9268723. 

[31] H. Jeon, Y. Jung, S. Lee, and Y. Jung, "Area-efficient 

short-time fourier transform processor for time–

frequency analysis of non-stationary signals," Applied 

Sciences (Switzerland), vol. 10, no. 20, pp. 1–10, Oct. 

2020, doi: 10.3390/app10207208. 

[32] S. Fitriani, S. Mandala, and M. A. Murti, "Review of 

semi-supervised method for Intrusion Detection 

System," in 2016 Asia Pacific Conference on 

Multimedia and Broadcasting (APMediaCast), 2016, 

pp. 36–41. doi: 10.1109/APMediaCast.2016.7878168. 

[33] I. K. Nti, O. Nyarko-Boateng, and J. Aning, 

"Performance of Machine Learning Algorithms with 

Different K Values in K-fold CrossValidation," 

International Journal of Information Technology and 

Computer Science, vol. 13, no. 6, pp. 61–71, Dec. 2021, 

doi: 10.5815/ijitcs.2021.06.05. 

[34] M. T. H. Chowdhury, K. N. Poudel, and Y. Hu, 

"Automatic Phonocardiography Analysis Using 

Discrete Wavelet Transform," in ACM International 

Conference Proceeding Series, Association for 

Computing Machinery, Aug. 2019. doi: 

10.1145/3387168.3387172. 

[35] M. M. Taye, "Understanding of Machine Learning with 

Deep Learning: Architectures, Workflow, Applications 

and Future Directions," Computers, vol. 12, no. 5. 

MDPI, May 01, 2023. doi: 

10.3390/computers12050091. 

 

AUTHOR(S) BIOGRAPHY 

Muhammad Rafli Ramadhan 

Was born in Bekasi, Indonesia. He is currently pursuing his 

bachelor's degree at the School of Computing, Telkom 

University. His research interests are artificial intelligence and 

biomedical engineering, specifically audio and image processing. 

 

Satria Mandala 

Received the Ph.D. degree in computer science from Universiti 

Teknologi Malaysia. He is currently the Director of the Human 

Centric Engineering (Humic Eng) and a member of the School of 

Computing (SoC), Telkom University, Indonesia. His research 

interests include issues related to wireless network security, the 

Internet of Things (IoT), biomedical engineering, digital signal, 

and image processing.  

 

Rafi Ullah 

Received an MS degree in Computer Systems Engineering from 

Ghulam Ishaq Khan Institute of Engineering Sciences and 

Technology, Pakistan, in 2006 and a PhD degree in Computer and 

Information Sciences from Pakistan Institute of Engineering and 

Applied Sciences (PIEAS), Pakistan, in 2010. From 2011 to 2012, 

he was a Postdoctoral Fellow at Universiti Teknologi 

PETRONAS. He is currently an Associate Professor at Universiti 



MUHAMMAD RAFLI RAMADHAN / JURNAL NASIONAL TEKNIK ELEKTRO - VOL. 13 NO. 1 (MARCH 2024) 

  https://doi.org/10.25077/jnte.v13n1.1184.2024 34 

Teknologi PETRONAS, Malaysia. His research interests include 

image/video processing, digital watermarking, cybersecurity, 

computer vision, machine learning and brain/EEG signals. 

 

Wael M.S. Yafooz 

Wael Yafooz is Associate Professor in the computer Science. He 

received his PhD in Computer Science in 2014 from UiTM.   He 

was invited as a speaker in many international conferences held 

in Bangladesh, Thailand, India, China and Russia. His research 

interest includes, Data Mining, Machine Learning, Deep 

Learning, Natural Language Processing, Social Network 

Analytics and Data Management. 

 

Muhammad Qomaruddin 

Muhammad Qomaruddin obtained his B.Sc. in Informatics 

Engineering from the Institut Sains Teknologi "AKPRIND", 

Yogyakarta, Indonesia, and obtained Master's and Ph.D. degrees 

in Computer Science from UTM Malaysia. He is a senior lecturer 

at Universitas Islam Sultan Agung (UNISSULA), Semarang, 

Indonesia. The area of research interest concentrates on 

Education Technology, Human-computer interaction, Social 

Computing, Information Systems, and the social impact of 

technology. 

APPENDICES 
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