Shrimp Pond Monitoring System using Cooperative Wireless Sensor Network Multi-Hop Technique based on Internet of Things

Main Article Content

Zickri Zickri
Andri Novandri
Ramzi Adriman
Nasaruddin

Keywords

WSN, Cooperative, Multi-hop, IoT, Monitoring System

Abstract

Water quality is a crucial factor in maintaining the survival and growth of shrimp. Manual water quality monitoring in shrimp ponds is no longer effective due to the need for periodic monitoring to maintain stable water quality. Therefore, online monitoring using various sensors installed in each pond is necessary. However, there are several challenges to overcome, such as the large expanse of the shrimp ponds, which may lead to data loss due to signal disruptions, and limited energy to power the sensors. To address these issues, this paper proposes the cooperative Wireless Sensor Network (WSN) technique with a multi-hop method for communication in the monitoring process. The system consists of five sensor nodes: temperature sensor, pH sensor, water level sensor, intake water flow sensor, and drain water flow sensor. The cooperative WSN multi-hop technique helps reduce energy consumption in the sensor nodes during measurement and data transmission, while also preventing data packet loss. This is achieved through the use of relay nodes that strengthen signals and forward data to the sink node. As a result, the battery life is extended, and energy usage in the monitoring process can be optimized. The system enables real-time online monitoring and can be accessed through a smartphone application. The results of this study show that the total energy consumption for data transmission in the sensor nodes is 9.64 J, while the total energy consumption for data forwarding in the relay nodes is 9.15 J. The total energy consumption in the transmit and receive processes is 18.79 J or 5.2 mWh. Therefore, it can be concluded that the energy savings of the proposed system is 4.3 mWh or approximately 45%, and is more efficient than the previous system.

References

[1] S. Mashari, R. Nurmalina, and Suharno, “Dinamika Daya Saing Ekspor Udang Beku dan Olahan Indonesia di Pasar Internasional,” J. Agribisnis Indones., vol. 7, no. 1, pp. 37–52, 2019, doi: https://doi.org/10.29244/jai.2019.7.1.37-52.
[2] A. R. Damayanti and S. Sugiarto, “Analisis Daya Saing Ekspor Udang Beku Indonesia di Jepang dan Faktor-Faktor yang Memengaruhinya Tahun 1989-2019,” J. Din. Ekon. Pembang., vol. 5, no. 1, pp. 16–35, 2022, doi: 10.14710/jdep.5.1.16-35.
[3] Indra, A. Fauzi, J. Haluan, and M. Boer, “Analisis Rehabilitasi Tambak Di Provinsi Nanggroe Aceh Darussalam (NAD),” J. Ilmu-ilmu Perair. dan Perikan. Indones., vol. 1, pp. 73–80, 2007.
[4] M. Komarudin, H. D. Septama, T. Yulianti, and M. A. Wicaksono, “Rekayasa E-Aquaculture untuk Pemantauan Tambak Udang secara Realtime dengan Model Multipoint Node,” J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 2, pp. 395–402, 2021, doi: 10.25126/jtiik.2021824142.
[5] F. R. Putra and A. Manan, “Monitoring Kualitas Air Pada Tambak Pembesaran Udang Vannamei (Litopenaeus Vannamei) di Situbondo, Jawa Timur,” J. Imliah Perikan. dan Kelaut., vol. 85, no. 1, pp. 2071–2079, 2014.
[6] M. F. Fuady, Haeruddin, and M. Niti Supardjo, “Pengaruh Pengelolaan Kualitas Air Terhadap Tingkat Kelulushidupan dan Laju Pertumbuhan Udang Vaname (Litopenaeus vannamei) di PT. Indokor Bangun Desa, Yogyakarta,” Manag. Aquat. Resour. J., vol. 2, no. 4, pp. 155–162, 2013, doi: 10.14710/marj.v2i4.4279.
[7] A. Amjad, F. Rabby, S. Sadia, M. Patwary, and E. Benkhelifa, “Cognitive Edge Computing Based Resource Allocation Framework for Internet of Things,” in 2nd International Conference on Fog and Mobile Edge Computing (FMEC), 2017, pp. 194–200, doi: 10.1109/FMEC.2017.7946430.
[8] M. A. Al-Jarrah, A. Al-Dweik, M. Kalil, and S. S. Ikki, “Decision Fusion in Distributed Cooperative Wireless Sensor Networks,” IEEE Trans. Veh. Technol., vol. 68, no. 1, pp. 797–811, 2019, doi: 10.1109/TVT.2018.2879413.
[9] U. Syafiqoh, S. Sunardi, and A. Yudhana, “Pengembangan Wireless Sensor Network Berbasis Internet of Things untuk Sistem Pemantauan Kualitas Air dan Tanah Pertanian,” J. Inform. J. Pengemb. IT, vol. 3, no. 2, pp. 285–289, 2018, doi: 10.30591/jpit.v3i2.878.
[10] J. Hu, J. Luo, Y. Zheng, and K. Li, “Graphene-Grid Deployment in Energy Harvesting Cooperative Wireless Sensor Networks for Green IoT,” IEEE Trans. Ind. Informatics, vol. 15, no. 3, pp. 1820–1829, 2019, doi: 10.1109/TII.2018.2871183.
[11] S. A. Putra, “Pengembangan Sistem Multiagent Pada Wireless Sensor Network,” J. Ilm. Teknol. Infomasi Terap., vol. 1, no. 1, pp. 17–23, 2014, doi: doi.org/10.33197/jitter.vol1.iss1.2014.41.
[12] Y. Y. Maulana, G. Wiranto, and D. Kurniawan, “Online Monitoring Kualitas Air Pada Budidaya Udang Berbasis WSN Dan IoT,” J. Informatics, Control Syst. Comput., vol. 10, no. 2, pp. 81–86, 2016, doi: dx.doi.org/10.14203/j.inkom.456.
[13] G. A. Pauzi, M. A. Syafira, A. Surtono, and A. Supriyanto, “Aplikasi IoT Sistem Monitoring Kualitas Air Tambak Udang Menggunakan Aplikasi Blynk Berbasis Arduino Uno,” J. Teor. dan Apl. Fis., vol. 5, no. 2, pp. 1–8, 2017.
[14] N. Arsyistawa, M. Rivai, and S. Suwito, “Aplikasi Wireless Sensor Network Untuk Pembacaan Meteran Air,” J. Tek. ITS, vol. 6, no. 2, pp. 807–812, 2017, doi: 10.12962/j23373539.v6i2.26648.
[15] C. Song, “Applications of Wireless Sensor Network in the Field of Production and Distribution,” in International Conference on Intelligent Computation Technology and Automation (ICICTA), 2015, pp. 225–227, doi: 10.1109/ICICTA.2015.64.
[16] N. T. K. Duy, N. D. Tu, T. H. Son, and L. H. D. Khanh, “Automated Monitoring and Control System for Shrimp Farms Based on Embedded System and Wireless Sensor Network,” in IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), 2018, vol. 2298, doi: 10.1109/ICECCT.2015.7226111.
[17] Z. Iqbal, K. Kim, and H. N. Lee, “A Cooperative Wireless Sensor Network for Indoor Industrial Monitoring,” IEEE Trans. Ind. Informatics, vol. 13, no. 2, pp. 482–491, 2017, doi: 10.1109/TII.2016.2613504.
[18] V. M. Patil and S. S. Sonavane, “Wireless Sensor Network Using Cooperative Communication,” Int. J. Adv. Eng. Manag., vol. 1, no. 2, 2014, doi: 10.1109/ICAEE.2014.6838436.
[19] M. Rescati, M. De Matteis, M. Paganoni, D. Pau, R. Schettini, and A. Baschirotto, “Event-Driven Cooperative-Based Internet of Things (IoT) System,” in International Conference on IC Design & Technology (ICICDT), 2018, pp. 193–196.
[20] B. P. Yahya, A. Silvia, and Nasron, “Perancangan Wireless Sensor Network dengan Sistem Komunikasi Ad Hoc,” in The 3rd Prosiding Annual Research Seminar 2017, Computer Science and ICT, 2017, vol. 3, no. 1, pp. 203–207.
[21] A. Sachan, S. Nigam, and A. Bajpai, “An Energy Efficient Virtual-MIMO Communication for Cluster Based Cooperative Wireless Sensor Network,” in 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 2018, pp. 1–6, doi: 10.1109/ICCCNT.2018.8493985.
[22] G. M. E. Rahman, K. A. Wahid, and A. Dinh, “IoT Enabled Low Power and Wide Range WSN Platform for Environment Monitoring Application,” in 2020 IEEE Region 10 Symposium (TENSYMP), 2020, pp. 908–911, doi: 10.1109/TENSYMP50017.2020.9230959.
[23] A. Barberis, L. Barboni, and M. Valle, “Evaluating Energy Consumption in Wireless Sensor Networks Applications,” in 10th Euromicro Conference on Digital System Design Architectures, Methods and Tools, 2007, pp. 455–462, doi: 10.1109/DSD.2007.4341509.
[24] K. Nair et al., “Optimizing Power Consumption in IoT based Wireless Sensor Networks using Bluetooth Low Energy,” in International Conference on Green Computing and Internet of Things (ICGCIoT), 2015, pp. 589–593, doi: 10.1109/ICGCIoT.2015.7380533.
[25] M. Calle and J. Kabara, “Measuring Energy Consumption in Wireless Sensor Networks using GSP,” 2006, doi: 10.1109/PIMRC.2006.254184.