Comparative Analysis of Two-Stage and Single-Stage Models in Batteryless PV Systems for Motor Power Supply

Main Article Content

I Wayan Sutaya
Ida Ayu Dwi Giriantari
Wayan Gede Ariastina
I Nyoman Satya Kumara

Keywords

Photovoltaic Systems, Maximum Power Point Tracking (MPPT), Two-Stage Model, Single-Stage Model, Motor Power Consumption

Abstract

Implementing photovoltaic (PV) systems as direct power sources for motors without batteries is a complex process that requires a sophisticated control mechanism. The crucial aspect of PV systems is the Maximum Power Point Tracking (MPPT) process, which ensures that the installed PV system generates optimal energy output. A recent study has analyzed research related to PV systems supplying power to pump motors, and the results have successfully classified these systems into two main models: the two-stage and the single-stage. The two-stage model involves separate power tracking and load consumption control processes, while the single-stage model integrates power tracking and load consumption control into a single process. A comparative analysis of these two models has revealed that the two-stage model exhibits higher stability due to the separate power tracking and load consumption control processes. Aspects such as the MPPT process, motor power consumption, and the utilization of DC-link capacitors were examined in this study. The findings of this comparative study contribute valuable insights into the effectiveness and stability of two-stage and single-stage models in PV systems supplying power to motors without batteries. The results will significantly interest researchers and practitioners working in Photovoltaic systems and motor control, providing helpful information for designing and implementing more efficient and reliable PV systems.

References

[1] Anil Kumar Saini and Ashish Kumar Dubey, "Performance Analysis of Single Phase Induction Motor with Solar PV Array for water Pumping System," Int. J. Eng. Res., vol. V6, no. 04, 2017, doi: 10.17577/ijertv6is040567.
[2] C. Soenen et al., "Comparison of Tank and Battery Storages for Photovoltaic Water Pumping," Energies, vol. 14, no. 9, pp. 5–7, 2021.
[3] A. Narendra, V. Naik N, A. K. Panda, and R. K. Lenka, "Solar PV fed FSVSI based Variable Speed IM Drive using ASVM Technique," Eng. Sci. Technol. an Int. J., vol. 40, p. 101366, 2023, doi: 10.1016/j.jestch.2023.101366.
[4] B. G. Reshma Raj O, "Solar PV Fed Induction Motor Driven Water Pumping System using High Gain Converter," Irjet, vol. 8, no. 7, pp. 3601–3610, 2021.
[5] S. Bhattacharjee and P. K. Nayak, "PV-pumped energy storage option for convalescing performance of hydroelectric station under declining precipitation trend," Renew. Energy, vol. 135, pp. 288–302, 2019, doi: 10.1016/j.renene.2018.12.021.
[6] A. Faizal and B. Setyaji, “Desain Maximum Power Point Tracking (MPPT) pada Panel Surya Menggunakan Metode Sliding Mode Control,” J. Sains, Teknol. dan Ind., vol. 14, no. 1, pp. 22–31, 2016.
[7] O. S. S. Hussian, H. M. Elsayed, and M. A. Moustafa Hassan, "Fuzzy Logic Control for a Stand-Alone PV System with PI Controller for Battery Charging Based on Evolutionary Technique," Proc. 2019 10th IEEE Int. Conf. Intell. Data Acquis. Adv. Comput. Syst. Technol. Appl. IDAACS 2019, vol. 2, pp. 889–894, 2019, doi: 10.1109/IDAACS.2019.8924269.
[8] T. Radjai, L. Rahmani, S. Mekhilef, and J. P. Gaubert, "Implementation of a modified incremental conductance MPPT algorithm with direct control based on a fuzzy duty cycle change estimator using dSPACE," Sol. Energy, vol. 110, pp. 325–337, 2014, doi: 10.1016/j.solener.2014.09.014.
[9] M. A. G. De Brito, L. Galotto, L. P. Sampaio, G. De Azevedo Melo, and C. A. Canesin, "Evaluation of the main MPPT techniques for photovoltaic applications," IEEE Trans. Ind. Electron., vol. 60, no. 3, pp. 1156–1167, 2013, doi: 10.1109/TIE.2012.2198036.
[10] H. Kraiem, "Sensorless torque and flux control of induction motor fed by photovoltaic system," Meas. Control (United Kingdom), vol. 55, no. 5–6, pp. 454–462, 2022, doi: 10.1177/00202940221104869.
[11] M. M. Elkholy and A. Fathy, "Optimization of a PV fed water pumping system without storage based on teaching-learning-based optimization algorithm and artificial neural network," Sol. Energy, vol. 139, pp. 199–212, 2016, doi: 10.1016/j.solener.2016.09.022.
[12] K. Y. Chou, S. T. Yang, and Y. P. Chen, "Maximum power point tracking of photovoltaic system based on reinforcement learning," Sensors (Switzerland), vol. 19, no. 22, 2019, doi: 10.3390/s19225054.
[13] A. Ajitha et al., "Underwater performance of thin-film photovoltaic module immersed in shallow and deep waters along with possible applications," Results Phys., vol. 15, no. October, p. 102768, 2019, doi: 10.1016/j.rinp.2019.102768.
[14] R. Gafar, X. Sun, and T. Abozead, "Three-phase AC Induction Motor Speed Control Based on Variable Speed Driver," Makara J. Technol., vol. 26, no. 2, pp. 54–58, 2022, doi: 10.7454/mst.v26i2.1523.
[15] S. N. Patrialova, D. H. Wardhana, L. P. Rahayu, and T. Agasta, "The Characteristic of Variable Frequency Drive for Water Flow Control in the SFC Plant," IPTEK J. Eng., vol. 7, no. 1, p. 6, 2021, doi: 10.12962/j23378557.v7i1.a8415.
[16] A. Ammar, K. Hamraoui, M. Belguellaoui, and A. Kheldoun, "Performance Enhancement of Photovoltaic Water Pumping System Based on BLDC Motor under Partial Shading Condition," Eng. Proc., vol. 14, no. 1, p. 22, 2022, doi: 10.3390/engproc2022014022.
[17] Z. M. S. Elbarbary, K. M. Cheema, S. F. Al-Gahtani, and R. A. El-Sehiemy, "High gain chopper supplied from PV system to fed synchronous reluctance motor drive for pumping water application," Sci. Rep., vol. 12, no. 1, pp. 1–15, 2022, doi: 10.1038/s41598-022-19671-x.
[18] G. H. K. Varma, V. R. Barry, and R. K. Jain, "A Total-Cross-Tied-Based Dynamic Photovoltaic Array Reconfiguration for Water Pumping System," IEEE Access, vol. 10, pp. 4832–4843, 2022, doi: 10.1109/ACCESS.2022.3141421.
[19] T. Hamdi and A. Toumi, "Sliding mode controller with fuzzy supervisor for MPPT of Photovoltaic Pumping system," Int. J. Power Electron. Drive Syst., vol. 14, no. 3, pp. 1639–1650, 2022.
[20] A. Loubna, T. Riad, and M. Salima, "Standalone photovoltaic array fed induction motor driven water pumping system," Int. J. Electr. Comput. Eng., vol. 10, no. 5, pp. 4534–4542, 2020, doi: 10.11591/ijece.v10i5.pp4534-4542.
[21] A. A. S. Esmeail, S. Oncu, and N. Altin, "An MPPT Controlled Three Phase PV Supplied Water Pumping System," Proc. 13th Int. Conf. Electron. Comput. Artif. Intell. ECAI 2021, no. April 2022, pp. 1–6, 2021, doi: 10.1109/ECAI52376.2021.9515018.
[22] C. Ghizlane, Z. Massaq, A. Abounada, and M. Mabrouki, "Speed control of induction motor driving a pump supplied by a photovoltaic array," Int. J. Renew. Energy Res., vol. 10, no. 1, pp. 237–242, 2020, doi: 10.20508/ijrer.v10i1.10320.g7859.
[23] H. Hamdi, C. Ben Regaya, and A. Zaafouri, "A sliding-neural network control of induction-motor-pump supplied by photovoltaic generator," Prot. Control Mod. Power Syst., vol. 5, no. 1, pp. 1–17, 2020, doi: 10.1186/s41601-019-0145-1.
[24] B. Talbi, F. Krim, T. Rekioua, S. Mekhilef, A. Laib, and A. Belaout, "A high-performance control scheme for photovoltaic pumping system under sudden irradiance and load changes," Sol. Energy, vol. 159, no. November 2017, pp. 353–368, 2018, doi: 10.1016/j.solener.2017.11.009.
[25] H. Bouzeria, C. Fetha, T. Bahi, I. Abadlia, Z. Layate, and S. Lekhchine, "Fuzzy Logic Space Vector Direct Torque Control of PMSM for Photovoltaic Water Pumping System," Energy Procedia, vol. 74, pp. 760–771, 2015, doi: 10.1016/j.egypro.2015.07.812.
[26] B. Singh, U. Sharma, and S. Kumar, "Standalone Photovoltaic Water Pumping System Using Induction Motor Drive with Reduced Sensors," IEEE Trans. Ind. Appl., vol. 54, no. 4, pp. 3645–3655, 2018, doi: 10.1109/TIA.2018.2825285.
[27] B. Singh and S. Shukla, "Induction motor drive for PV water pumping with reduced sensors," IET Power Electron., vol. 11, no. 12, pp. 1903–1913, 2018, doi: 10.1049/iet-pel.2017.0856.
[28] V. T. Akhila and S. Arun, "Review of Solar PV Powered Water Pumping System Using Induction Motor Drive," IOP Conf. Ser. Mater. Sci. Eng., vol. 396, no. 1, 2018, doi: 10.1088/1757-899X/396/1/012047.
[29] H. D. Liu, C. H. Lin, K. J. Pai, and C. M. Wang, "A GMPPT algorithm for preventing the LMPP problems based on trend line transformation technique," Sol. Energy, vol. 198, no. November 2019, pp. 53–67, 2020, doi: 10.1016/j.solener.2020.01.049.
[30] M. Arsalan, R. Iftikhar, I. Ahmad, A. Hasan, K. Sabahat, and A. Javeria, "MPPT for photovoltaic system using nonlinear backstepping controller with integral action," Sol. Energy, vol. 170, no. January, pp. 192–200, 2018, doi: 10.1016/j.solener.2018.04.061.
[31] E. Durán, J. M. Andújar, J. M. Enrique, and J. M. Pérez-Oria, "Determination of PV generator I-V/P-V characteristic curves using a DC-DC converter controlled by a virtual instrument," Int. J. Photoenergy, vol. 2012, no. January, 2012, doi: 10.1155/2012/843185.
[32] S. Khunchan and B. Wiengmoon, "Method to determine the single curve IV characteristic parameter of solar cell," J. Phys. Conf. Ser., vol. 1144, no. 1, 2018, doi: 10.1088/1742-6596/1144/1/012012.
[33] T. Suntio, T. Messo, A. Aapro, J. Kivimäki, and A. Kuperman, "Review of PV generator as an input source for power electronic converters," Energies, vol. 10, no. 8, 2017, doi: 10.3390/en10081076.
[34] A. M. Noman, H. S. Sheikh, A. F. Murtaza, S. Z. Almutairi, M. H. Alqahtani, and A. S. Aljumah, "Maximum Power Point Tracking Algorithm of Photovoltaic Array through Determination of Boost Converter Conduction Mode," Appl. Sci., vol. 13, no. 14, 2023, doi: 10.3390/app13148033.
[35] R. Alik, A. Jusoh, and T. Sutikno, "A review on Perturb and Observe maximum power point tracking in photovoltaic system," Telkomnika (Telecommunication Comput. Electron. Control., vol. 13, no. 3, pp. 745–751, 2015, doi: 10.12928/telkomnika.v13i3.1439.
[36] E. M., I. M., and A. I., "High Step up DC-DC Converter Fed from Photovoltaic System," Int. J. Comput. Appl., vol. 139, no. 3, pp. 6–13, 2016, doi: 10.5120/ijca2016909427.
[37] S. André, F. Silva, S. Pinto, and P. Miguens, "Novel Incremental Conductance Feedback Method with Integral Compensator for Maximum Power Point Tracking: A Comparison Using Hardware in the Loop," Appl. Sci., vol. 13, no. 7, 2023, doi: 10.3390/app13074082.
[38] N. Genc, "PV based V/F controlled induction motor drive for water pumping," Int. J. Tech. Phys. Probl. Eng., vol. 12, no. 4, pp. 103–108, 2020.
[39] M. A. Memon, "Sizing of dc-link capacitor for a grid connected solar photovoltaic inverter," Indian J. Sci. Technol., vol. 13, no. 22, pp. 2272–2281, 2020, doi: 10.17485/ijst/v13i22.406.
[40] M. Abd El Sattar, K. Ahmed, A. AboZied, and A. Diab, "Adaptive MPPT of Water Photovoltaic Pumping System Based on Vector Controlled Induction Motor Drives," J. Adv. Eng. Trends, vol. 41, no. 2, pp. 261–274, 2021, doi: 10.21608/jaet.2021.47871.1065.
[41] S. Shukla and B. Singh, "Single-Stage PV-Grid Interactive Induction Motor Drive with Improved Flux Estimation Technique for Water Pumping with Reduced Sensors," IEEE Trans. Power Electron., vol. 35, no. 12, pp. 12988–12999, 2020, doi: 10.1109/TPEL.2020.2990833.
[42] S. Shukla and B. Singh, "Single-Stage PV Array Fed Speed Sensorless Vector Control of Induction Motor Drive for Water Pumping," IEEE Trans. Ind. Appl., vol. 54, no. 4, pp. 3575–3585, 2018, doi: 10.1109/TIA.2018.2810263.
[43] J. M. Mumthas A, "Simulation and Analysis of Single Stage Solar PV fed Brushless DC motor for Water Pumping," Int. J. Innov. Res. Electr. Electron. Instrum. Control Eng., vol. 1, no. 2, pp. 107–112, 2018.
[44] R. Antonello, C. Costabeber, Alessandror, F. Tinazzi, and M. Zigliotto, “Energy-Efficient Autonomous Solar Synchronous Motors,” IEEE Trans. Ind. Electron., vol. 64, no. 1, pp. 43–51, 2017.
[45] T. S. R. R. Eddy and B. A. Nuradha, "Modeling and Simulation of Solar PV Wind Hybrid System for Induction Motor Drive Application," Int. J. Innov. Sci. Eng. Technol., vol. 04, no. 09, pp. 1655–1660, 2016.
[46] S. Ozdemir, N. Altin, I. Sefa, and G. Bal, "PV supplied single stage mppt inverter for induction motor actuated ventilation systems," Elektron. ir Elektrotechnika, vol. 20, no. 5, pp. 116–122, 2014, doi: 10.5755/j01.eee.20.5.7111.
[47] C. Ramulu, P. Sanjeevikumar, R. Karampuri, S. Jain, A. H. Ertas, and V. Fedak, "A solar PV water pumping solution using a three-level cascaded inverter connected induction motor drive," Eng. Sci. Technol. an Int. J., vol. 19, no. 4, pp. 1731–1741, 2016, doi: 10.1016/j.jestch.2016.08.019.
[48] G. Jain, V. K. Arun Shankar, and S. Umashankar, "Modelling and simulation of solar photovoltaic fed induction motor for water pumping application using perturb and observer MPPT algorithm," 2016 Int. Conf. Energy Effic. Technol. Sustain. ICEETS 2016, no. April, pp. 250–254, 2016, doi: 10.1109/ICEETS.2016.7582935.
[49] S. A. Rizzo and G. Scelba, "ANN based MPPT method for rapidly variable shading conditions," Appl. Energy, vol. 145, no. May, pp. 124–132, 2015, doi: 10.1016/j.apenergy.2015.01.077.
[50] H. A. Sher, A. F. Murtaza, A. Noman, K. E. Addoweesh, K. Al-Haddad, and M. Chiaberge, "A New Sensorless Hybrid MPPT Algorithm Based on Fractional Short-Circuit Current Measurement and P&O MPPT," IEEE Trans. Sustain. Energy, vol. 6, no. 4, pp. 1426–1434, 2015, doi: 10.1109/TSTE.2015.2438781.
[51] Y. Li, Z. Tang, Z. Zhu, and Y. Yang, "A novel MPPT circuit with 99.1% tracking accuracy for energy harvesting," Analog Integr. Circuits Signal Process., vol. 94, no. 1, pp. 105–115, 2018, doi: 10.1007/s10470-017-1079-z.