Pemodelan dan Prediksi Daya Output Photovoltaic secara Real Time Berbasis Mikrokontroler

Main Article Content

Eka Prasetyono
Ragil Wigas Wicaksana
Novie Ayub Windarko
Moh. Zaenal Efendi

Keywords

Abstract

The electrical energy generated by the photovoltaic (PV) as a renewable energy source highly affected by environmental conditions such as intensity of sunlight irradiance, temperature, geographic location and tilt angle of PV itself. How much power should be generated by the PV for every times and anywhere will be discussed in this paper. This paper are implemented models of clear sky solar irradiance, solar position and PV temperature to predict the power output should be generated by PV. The model is implemented on the ARM Cortex M4F microcontroller STM32F407 which is a 32bit microcontroller and equipped with DSP, so the prediction of PV power output can be done online and in real time. To be able to predict the PV power output online, at any time and wherever they are, in this study microcontroller equipped with temperature sensors and input geographical information (latitude-longitude) and also equipped with a memory card for data logger between the predictions and field measurement. Results have been obtained by field experiments, measurements test for PV is very close to predictions with an average error 4.72% and computation time for all models by microcontroller with DSP instruction 33.64% faster compare to without DSP instruction.

Keywords : Photovoltaic, Real time power prediction and Microcontroller.

 

Abstrak—Energi listrik yang dihasilkan oleh photovoltaic (PV) sebagai sumber energi terbarukan sangat terpengaruh oleh kondisi lingkungan seperti besar kecilnya intensitas iradiasi sinar matahari, suhu, letak geografis dan orientasi kemiringan dari PV itu sendiri. Berapa daya yang seharusnya dihasilkan oleh PV untuk setiap saat dan dimana saja akan dibahas pada makalah ini.  Pada makalah ini mengimplementasi clear sky solar irradiance, solar position dan PV temperatur model untuk memprediksi daya output yang seharusnya dihasilkan oleh PV. Model tersebut diimplemantasikan pada mikrokontroller ARM Cortex M4F STM32F407 yang merupakan mikrokontroller 32bit dan dilengkapi dengan DSP, sehingga prediksi daya output PV dapat dilakukan secara online dan real time. Untuk dapat memprediksi daya output PV secara online, setiap saat dan dimana saja berada, maka pada makalah ini mikrokontroler dilengkapi dengan sensor suhu dan input informasi geografis berupa lintang-bujur dan dilengkapi juga dengan memory card untuk data logger antara daya hasil prediksi dan daya hasil pengukurang dilapangan. Hasil yang telah diperoleh dari percobaan lapangan menunjukkan bahwa daya hasil pengukuran PV terhadap prediksi daya melalui model sangat mendekati dengan rata-rata error 4.72% dan penggunaan instruksi DSP pada mikrokontroler untuk perhitungan model waktu komputasinya 33.64% lebih cepat dibandingkan tanpa instruksi DSP

Kata Kunci : Photovoltaic, Prediksi daya secara real time  dan Mikrokontroler

References

[1] Muhammed J. Adinoyi, Syed A.M. Said., “Effect of dust accumulation on the power outputs of solar photovoltaic modules”, Elsevier, Renewable Energy 60 (2013), p. 633-636.
[2] H. Qasem, T.R. Betts, R. Gottschalg., “Spatially-resolved modelling of dust effect on cadmium telluride photovoltaic modules”, Elsevier, Solar Energy 90 (2013) , p. 154–163.
[3] Dzung D. Nguyen, Brad Lehman, Sagar Kamarthi, Solar Photovoltaic Array's Shadow Evaluation Using Neural Network with On-Site Measurement, IEEE Canada Electrical Power Conference (2007), p. 44-49
[4] Yahia Baghzouz, Characteristics of PV Power Systems. UNLV Las Vegas (2008).
[5] A. Bouilouta, A. Mellita, S.A. Kalogirou,. “New MPPT method for stand-alone photovoltaic systems operating under partially shaded conditions”. Elsevier, Energy 55 (2013), p. 1172-1185.
[6] Lian Lian Jianga, Douglas L. Maskell, Jagdish C. Patrab,. “A novel ant colony optimization-based maximum power point tracking for photovoltaic systems under partially shaded conditions”, Elsevier, Energy and Buildings 58 (2013) , p. 227–236.
[7] F. Brihmat, S. Mekhtoub, PV Cell Temperature/ PV Power Output Relationships Homer Methodology Calculation, IPCO(2014), vol 2.
[8] Matthew J. Reno, Clifford W. Hansen, Joshua S. Stein,. “Global Horizontal Irradiance Clear Sky Models: Implementation and Analysis”. Sandia National lab, March 2012.
[9] R. G. Allen, “Task Committee on Standardization of Reference, The ASCE standardized reference evapotranspiration equation”. Environmental, and E. Water Resources institute. Reston, Va.: American Society of Civil Engineers, 2005.
[10] Dzung D. Nguyen, Brad Lehman, Sagar Kamarthi,. “Solar Photovoltaic Array's Shadow Evaluation Using Neural Network with On-Site Measurement”, IEEE Canada Electrical Power Conference, 2007.
[11] Ming Ding, Xinglong Wu,. “Three-phase Probabilistic Load Flow Including Photovoltaic Generation in Distribution System”, International Journal of Automation and Power Engineering, 2012, p. 151-158.
[12] Rodolfo Araneo, Umberto Grasselli and Salvatore Celozzi,. “Assessment of a practical model to estimate the cell temperature of a photovoltaic module”. International Journal of Energy and Environmental Engineering, 2014, 5:2
[13] Gueymard CA. The sun’s total and spectral irradiance for solar energy applications and solar radiation models. Solar Energy 2004;76(4):423–53.
[14] Chen ZS, Mo SP, Hu P. Recent progress in thermodynamics of radiation—exergy of radiation: effective temperature of photon and entropy constant of photon. Science in China Series E: Technological Sciences 2008;51(8):1096–109.
[15] Virtuani A, Lotter E, Powalla M. Influence of the light source on the lowirradiance performance of Cu (In: Ga) Se2 solar cells. Solar Energy Materials and Solar Cells 2006;90(14):2141–9.
[16] Pemanfaatan Energi Surya Di Indonesia, http://www.esdm.go.id/news-archives/56-artikel/3347-pemanfaatan-energi-surya-di-indonesia.html
[17] Kusdiana, Dadan., kondisi riil kebutuhan energi di indonesia dan sumber-sumber energi alternatif terbarukan, Direktorat Jenderal Listrik dan Pemanfaatan Energi Departemen Energi dan Sumber Daya Mineral, Bogor, 3 Desember 2008.