Microstrip Rectangular Patch Array Antenna for Tsunami Radar

Main Article Content

Fitrilina Fitrilina
Junas Haidi
Alex Surapati
Hendy Santosa
Firdaus
Rudy Fernandez

Keywords

Microstrip Antenna, Rectangular Patch, Tsunami Radar

Abstract

Tsunami radar is one of the detection tools used in the tsunami early warning system. The most commonly used is high-frequency radar with a long-range but high power and low resolution. However, in order to improve the reliability of the tsunami warning system in detecting signs of a tsunami and monitoring with a high speed of updating information, a radar system with a high resolution is needed. High resolution can only be obtained by a radar that has a large bandwidth in the radio spectrum. Increasing the bandwidth can be done by increasing radar operating frequency. An antenna is one of the essential components that can determine the performance of the radar system. Therefore, in this study, an antenna was designed at Super High Frequency to be applied to a radar system. The designed antenna is a microstrip antenna with a rectangular patch using array method. The desired specifications at a frequency of 5.8 GHz are return loss ≤-10 dB, VSWR ≤2, bandwidth >150 Mhz, beamwidth >200. After the simulated design met the specifications, the fabrication and measurements were later carried out. The measurement results show a frequency shift to 5,71 GHz with a return loss of -21,346, VSWR of 1,186, bandwidth of 200 MHz, a beamwidth of 40o and gain 11.65 dB. Thus, the proposed antenna, the 8-rectangular patch microstrip array antenna, can be applied in tsunami radar systems.

References

M. Galletti, G. Krieger, T. Börner, N. Marquart, and J. Schultz-Stellenfleth, “Concept design of a near-space radar for tsunami detection,” Int. Geosci. Remote Sens. Symp., pp. 34–37, 2007, doi: 10.1109/IGARSS.2007.4422723.

P. G. B. dan T. K. B. Geofisika, Katalog Tsunami Indonesia Tahun 416-2018. 2019.

F. G. Becker et al., “No 主観的健康感を中心とした在宅高齢者における 健康関連指標に関する共分散構造分析Title,” Syria Stud., vol. 7, no. 1, pp. 37–72, 2015, [Online]. Available: https://www.researchgate.net/publication/269107473_What_is_governance/link/548173090cf22525dcb61443/download%0Ahttp://www.econ.upf.edu/~reynal/Civil wars_12December2010.pdf%0Ahttps://think-asia.org/handle/11540/8282%0Ahttps://www.jstor.org/stable/41857625.

D. B. Trizna and V. Court, “Tsunami Detection using Multi-frequency Beam-Forming HF Radar,” 2006.

A. Dzvonkovskaya, “HF surface wave radar for tsunami alerting: From system concept and simulations to integration into early warning systems,” IEEE Aerosp. Electron. Syst. Mag., vol. 33, no. 3, pp. 48–58, 2018, doi: 10.1109/MAES.2018.160267.

S. Grilli, “UHF radar signature of a tsunami approaching coastal areas : modeling , experiments and application to tsunami warning December,” no. December, 2007.

“A BASIC STUDY OF UTILIZATION OF DBF OCEAN RADAR WITH VHF BAND FOR TSUNAMI DETECTION IN OPEN SEA * 1 Central Research Institute of Electric Power Industry , 1646 Abiko , Abiko-shi , Chiba 270-1194 , Japan * 2 Chubu Electric Power Co ., Inc ., 1 Higashi-shi,” pp. 4924–4927, 2015.

D. Wijoyono, S. Ramadhanty, D. Rakmatullah, and F. Y. Zulkifli, “Uniform Microstrip Array Antenna with Low Sidelobe Level for Coastal Surveillance Radar Application at 9 . 37 – 9 . 43 GHz,” IEEE, pp. 22–25, 2017.

M. Wahab, Y. P. Saputera, and Y. Wahyu, “Design and realization of archimedes spiral antenna for Radar detector at 2-18 GHz frequencies,” 2013 19th Asia-Pacific Conf. Commun. APCC 2013, pp. 304–309, 2013, doi: 10.1109/APCC.2013.6765961.

Y. Yuliyus Maulana, Y. Wahyu, F. Oktafiani, Y. Perdana Saputra, and A. Setiawan, “Rectangular Patch Antenna Array for Radar Application,” TELKOMNIKA (Telecommunication Comput. Electron. Control., vol. 14, no. 4, p. 1345, 2016, doi: 10.12928/telkomnika.v14i4.4742.

S. A. Rahayu, J. Suryana, L. Tursilowati, H. -, and G. A. Nugroho, “Design Analysis of Microstrip Rectangular Patch Array Antenna 16×1 on X-band Radar,” J. Elektron. dan Telekomun., vol. 19, no. 1, p. 7, 2019, doi: 10.14203/jet.v19.7-12.

V. Midasala and P. Siddaiah, “Microstrip Patch Antenna Array Design to Improve Better Gains,” Procedia Comput. Sci., vol. 85, no. Cms, pp. 401–409, 2016, doi: 10.1016/j.procs.2016.05.181.

M. L. Heron et al., “Tsunami observations by coastal ocean radar,” Int. J. Remote Sens., vol. 29, no. 21, pp. 6347–6359, 2008, doi: 10.1080/01431160802175371.

A. A. Qureshi, M. U. Afzal, T. Taqueer, and M. A. Tarar, “Performance analysis of FR-4 substrate for high frequency microstrip antennas,” 2011 China-Japan Jt. Microw. Conf. Proceedings, CJMW 2011, no. January, pp. 159–162, 2011.

Y. P. Saputera, Y. Wahyu, and M. Wahab, “Antenna co-planar array of X-band frequency 9.4 GHz for radar,” Proc. 2014 8th Int. Conf. Telecommun. Syst. Serv. Appl. TSSA 2014, 2015, doi: 10.1109/TSSA.2014.7065924.

B. Y. U. Putri, E. S. Nugraha, A. Prakasa, and S. F. Siddiq, “Design and Performance Analysis of Linear Array Microstrip Antennas with Mitered-Bends Feeding Network for X-Band Radar Applications,” J. Elektron. dan Telekomun., vol. 20, no. 1, p. 9, 2020, doi: 10.14203/jet.v20.9-15.

M. Wahab, Y. P. Saputera, and Y. Wahyu, “Research and Development of Transportable Coastal Radar at S-band Frequency with FM-CW Technology for Supporting C4ISR,” Proc. 3rd Int. Conf. Electr. Electron., vol. 69, no. Eeic, pp. 172–177, 2013, doi: 10.2991/eeic-13.2013.40.

V. Ramamurthy, D. V Katrodiya, J. N. Peshavaria, and V. Ramamoorthy, “Design of Microstrip Patch Antenna Array for Wireless Applications,” Iject, vol. 6, no. 2, pp. 1–5, 2015, [Online]. Available: https://www.researchgate.net/publication/281643519.

M. I. L. Prasetyani, S. Alam, and I. Surjati, “Perancangan Antena Mikrostrip Array Menggunakan Metode Truncated Corner dengan U-Slot pada Frekuensi 2,3 GHz,” JTERA (Jurnal Teknol. Rekayasa), vol. 6, no. 1, p. 85, 2021, doi: 10.31544/jtera.v6.i1.2021.85-92.

R. Solomon, “Tsunami Warning Plan,” p. 13, 2007.

R. Jaya Lakshmi and T. Mary Neebha, “Design of Antenna Arrays Using Chaotic Jaya Algorithm,” Adv. Intell. Syst. Comput., vol. 949, no. January 2020, pp. 337–349, 2020, doi: 10.1007/978-981-13-8196-6_30.