Optimization of Thermal Power Plant Operations Using Genetic Algorithms

Main Article Content

Sapto Nisworo
Arnawan Hasibuan
Syafii Syafii

Keywords

scheduling, electric power, cost

Abstract

Accurate scheduling of capacity and operating time for electricity generation is intended to be able to determine the start and end periods of electricity generation operations and produce power output that can meet load requirements. In this research, the goal to be achieved is to know the existence of power plants when to start operating and when to stop operations and to minimize operational costs by dividing the value of the power that will be generated at each power plant. Genetic algorithms are applied to thermal power plant data patterns to design a scheduling plan. The process involves combining the six power generating units to be tested into three different samples. It was found that the total power load and total cost for Sample 1 was 78,109 MW and IDR 200,285, 66.26, Sample 2 was 74,497 MW and IDR 149,774,156.41, and Sample 3 was 78,681 MW and IDR 156,297,893, respectively. 08. This shows that the cost of sample 1 compared to sample 2 decreased by 25.22%, then in sample 2 when compared to sample 3 it increased by 4.17%. The data also shows that a higher number of generations results in lower costs. Therefore, genetic algorithms produce better solutions from one generation to the next.

References

[1] C. Wei et al., "A bi-level scheduling model for virtual power plants with aggregated thermostatically controlled loads and renewable energy," Appl. Energy, vol. 224, pp. 659–670, 2018.
[2] S. I. Taheri, M. B. C. Salles, and E. C. M. Costa, "Optimal cost management of distributed generation units and microgrids for virtual power plant scheduling," IEEE Access, vol. 8, pp. 208449–208461, 2020.
[3] S. Monice and S. Syafii, “OPERASI EKONOMIS (economic Dispatch) Pembangkit Listrik Tenaga Sampah (PLTSa) dan (PLTG) dalam Melayani Beban Puncak Kelistrikan Sumbar,” Operasi Ekon, vol. 2, 2013.
[4] S. Syahrizal, R. H. Siregar, and others, “Analisa Economic Dispatch Pada Unit Pembangkit Menggunakan Metode Iterasi Lambda Berdasarkan Base Point And Participation Factors,” J. Komputer, Inf. Teknol. dan Elektro, vol. 3, no. 2, 2018.
[5] S. Sarjiya, M. Isnaeni, and others, “OPTIMASI PENJADWALAN PEMBANGKIT TERMAL DENGAN SISTEM PENYIMPANAN ENERGI MENGGUNAKAN ALGORITMA GENETIKA,” J. Penelit. Tek. Elektro dan Teknol. Inf., vol. 1, no. 1, 2014.
[6] J. Aslak Petersen, D. M. Heide-Jørgensen, N. K. Detlefsen, and T. K. Boomsma, "Short-term balancing of supply and demand in an electricity system: forecasting and scheduling," Ann. Oper. Res., vol. 238, pp. 449–473, 2016.
[7] L. Xie, Y. Gu, X. Zhu, and M. G. Genton, "Short-term spatio-temporal wind power forecast in robust look-ahead power system dispatch," IEEE Trans. Smart Grid, vol. 5, no. 1, pp. 511–520, 2013.
[8] D. I. S. B. Sinurat, “INOVASI SISTEM TENAGA LISTRIK DAN PENGEMBANGAN PEMBANGKITAN LISTRIK DI INDONESIA TERUTAMA DI DAERAH TERPENCIL,” 2019.
[9] A. Hsb, “Teknik Desain Optimasi Dengan Algoritma Genetik,” Electr. J. Rekayasa dan Teknol. Elektro, vol. 3, no. 2, pp. 90–95, 2009.
[10] A. HASIBUAN, “Studi optimasi daya reaktif pada sistem tenaga listrik dengan menggunakan metode algoritma genetik,” Universitas Gadjah Mada, 2001.
[11] A. Hasibuan, S. Masri, and W. Othman, "Effect of distributed generation installation on power loss using genetic algorithm method," in IOP Conference Series: Materials Science and Engineering, 2018, vol. 308, no. 1, p. 12034.
[12] D. Rumana, H. Hermawan, and M. Facta, “Implementasi Algoritma Genetik dalam Economic Dispatch dengan Valve Point Loading,” Jurusan Teknik Elektro Fakultas Teknik, 2011.
[13] S. K. Sinha and others, "Genetic algorithm based hydrothermal generation scheduling," in 2015 International Conference on Recent Developments in Control, Automation and Power Engineering (RDCAPE), 2015, pp. 332–337.
[14] E. N. Supriatna, “Penjadwalan Ekonomis Pembangkit Termal Dengan Memperhitungkan Rugi-Rugi Transmisi Menggunakan Pattern Search,” Universitas Pendidikan Indonesia, 2016.
[15] Syafii and K. I. Putri, “Analisa Operasi Ekonomis Pembangkit Termal untuk Melayani Beban Puncak Sistem Kelistrikan Sumbar,” vol. 7, no. 1, pp. 1–7, 2018.
[16] M. I. Rusydi, “Optimasi Pengendali PID pada Pesawat Autopilot Berbasiskan Algoritma Genetika,” J. Nas. Tek. Elektro, vol. 5, no. 2, pp. 217–223, 2016.
[17] A. Konak, D. W. Coit, and A. E. Smith, "Multi-objective optimization using genetic algorithms: A tutorial," Reliab. Eng. \& Syst. Saf., vol. 91, no. 9, pp. 992–1007, 2006.
[18] C. M. Fonseca and P. J. Fleming, "Multiobjective optimization and multiple constraint handling with evolutionary algorithms. II. Application example," IEEE Trans. Syst. man, Cybern. A Syst. humans, vol. 28, no. 1, pp. 38–47, 1998.
[19] E. K. B. G. Kendall, Search Methodologies Introductory Tutorials in Optimization and Decision Support Techniques. 2014.
[20] F. N. Budiman, N. A. Windarko, and S. Kuswadi, "Application of Genetic Algorithm to Minimize Harmonic in Multilevel Inverter," J. Nas. Tek. Elektro, vol. 5, no. 1, pp. 73–79, 2016.
[21] A. K. Bhattacharjee, Genetic algorithm for VLSI physical design. Lamar University-Beaumont, 2003.
[22] F. Himmah, “Penerapan algoritma genetika pada masalah penjadwalan operasi sistem pembangkit tenaga listrik,” 2013.
[23] J. S. Kim and T. F. Edgar, "Optimal scheduling of combined heat and power plants using mixed-integer nonlinear programming," Energy, vol. 77, pp. 675–690, 2014.
[24] M. A. A. Pedrasa, T. D. Spooner, and I. F. MacGill, "Scheduling of demand side resources using binary particle swarm optimization," IEEE Trans. Power Syst., vol. 24, no. 3, pp. 1173–1181, 2009.