The Design of Soil Temperature and Humidity Monitoring Systems with IoT-Based LoRa Technology

Main Article Content

Baharuddin
Akbar Alhaqi Hidayat
Hanalde Andre
Rina Angraini

Keywords

Abstract

Soil temperature and humidity are important factors in affecting the condition of agricultural sector, which has an impact on the quality and quantity of the production. Lack of information on the condition of agricultural soil is one of the causes in productivity deficiency in the process of agricultural cultivation. The application of technology in the field of agriculture is expected to be able to reduce various adverse effects of agricultural soil conditions. One of which is by periodic monitoring, such as the temperature and humidity of agricultural soil. This research aims to design LoRa technology to be used as a data transmission medium for monitoring soil temperature and humidity by applying a system that is based on the Blynk application, which will make the users easier to monitor the system remotely. The temperature sensor was able to acquire data with 98.37% accuracy and the soil humidity sensor was able to acquire data with 91.63% accuracy. The changes in LoRa transmission parameters for monitoring data have an effect on the quality of its performance. The experimental results with Bandwidth variation (BW) from 31.25 kHz, 62.50 kHz, 125 kHz, 250 kHz, and 500 kHz at a distance of 15m, the best SNR and RSSI values were obtained for BW 31.25 kHz with values of 5.42 dB and -104.90 dBm. Whereas, the best ToA is obtained with a BW of 500 kHz with a value of 27.50 ms. While, the experimental result with the variation of Coding Rate (CR) from CR 4/5, 4/6, 4/7, and 4/8 at a distance of 15m, the best SNR and RSSI values were obtained CR 4/8 with values of 4.10 dB and -106.40 dBm and he best ToA was obtained CR 4/5 with a value of 112.70 ms. In testing by using variation Spreading Factor (SF) from SF7, SF9, and SF12, the higher the SF value used, the wider the range of area data communication will be. Configuration SF7 and SF9 were only able to reach a distance of 25m, while SF12 was able to reach a distance of 35m.

References

A. B. Setyawan, M. H. H. Ichsan, G. Edhi Setyawan, “Sistem Monitoring Kelembaban Tanah , Kelembaban Udara , Dan Suhu Pada Lahan Pertanian,” vol. 2, no. 12, pp. 7502–7508, 2018.

M. T. B. Sitorus., N. Kurniasih,. D. P. Sari, “Prototype Alat Monitoring Suhu, Kelembaban dan Kecepatan Angin Untuk Smart Farming Menggunakan Komunikasi LoRa dengan Daya Listrik Menggunakan Panel Surya,” Kilat, vol. 10, no. 2, pp. 370–380, 2021, doi: 10.33322/kilat.v10i2.1376.

S. E. Pratama, “Perancangan dan Realisasi Node MCU IoT Komunikasi Lora,” S1 Tek. Elektro Univ. Telkom Bandung, 2019.

H. N. Halawa, “Rancang Bangun Robot Smart Plant Potberbasis Mikrokontroler,” Tek. Komput. Univ. Andalas Padang, no. 1996, p. 6, 2021.

M. Soleh, “Pengembangan Sistem Monitoring Kondisi Lingkungan Berbasis Teknologi Lora Berbasis Cloud Untuk Menunjang Penerapan Pertanian Presisi Di Rural Area,” Universitas Gadjahmada, 2019.

F. Raziq Ashari et al., “Rancang Bangun Alat Monitoring Suhu Dan Kelembaban Tanah Berbasis Lora End Device,” Ranc. Bangun Alat Monit. Suhu Dan Kelembaban Tanah Berbas. Lora End Device, 2022.

R. G. Wisduanto, A. Bhawiyuga, and D. P. Kartikasari, “Implementasi Sistem Akuisisi Data Sensor Pertanian Menggunakan,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 3, pp. 2201–2207, 2019.

M. N. R. Kurniawan, “Pembuatan Modul Komunikasi Pada Multi-,” 2017.

A. Augustin, J. Yi, T. Clausen, and W. M. Townsley, “A study of Lora: Long range & low power networks for the internet of things,” Sensors (Switzerland), vol. 16, no. 9, pp. 1–18, 2016, DOI: 10.3390/s16091466.

I. P. Setiawan, “Analisis Parameter LoRa Pada Lingkungan Indoor,” Repos. Univ. Din., vol., no., p. 8, 2020, [Online]. Available: repository.dinamika.ac.id

A. Arifin, M. Rizal, and R. Angriawan, “Pengaruh Spreading Factor (Sf) Terhadap Jarak Dan Persentase Data Terkirim Lora Dalam Hutan,” … Sist. Inf. dan …, pp. 1103–1108, 2019, [Online]. Available: https://ejurnal.dipanegara.ac.id/index.php/sensitif/article/view/4941

M. Swain, D. Zimon, R. Singh, M. F. Hashmi, M. Rashid, and S. Hakak, "LoRa-LBO: An experimental analysis of Lora link budget optimization in custom build an IoT test bed for agriculture 4.0," Agronomy, vol. 11, no. 5, 2021, DOI: 10.3390/agronomy11050820.

R. Islam, M. W. Rahman, R. Rubaiyat, M. M. Hasan, M. M. Reza, and M. M. Rahman, "LoRa and server-based home automation using the internet of things (IoT)," J. King Saud Univ. - Comput. Inf. Sci., no. xxxx, 2021, doi: 10.1016/j.jksuci.2020.12.020.

H. Kusumah and R. A. Pradana, “Penerapan Trainer Interfacing Mikrokontroler Dan Internet of Things Berbasis Esp32 Pada Mata Kuliah Interfacing,” J. CERITA, vol. 5, no. 2, pp. 120–134, 2019, DOI: 10.33050/cerita.v5i2.237.

S. R. I. W. Nengsi, “Monitoring Kendaraan Menggunakan Long Range Radio Frekuensi Berbasis Web,” 2019.

S. Budiyanto, “Sistem Logger Suhu dengan Menggunakan Komunikasi Gelombang Radio,” J. Teknol. Elektro, Univ. Mercu Buana ISSN 2086-9479, vol. 1999, no. December, pp. 1–6, 2006.

Most read articles by the same author(s)